Dang Yiteng, Lattner Johanna, Lahola-Chomiak Adrian A, Afonso Diana Alves, Ulbricht Elke, Taubenberger Anna, Rulands Steffen, Tabler Jacqueline M
Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.
Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
Nat Commun. 2025 May 9;16(1):4330. doi: 10.1038/s41467-025-59164-9.
Cellular motion is a key feature of tissue morphogenesis and is often driven by migration. However, migration need not explain cell motion in contexts where there is little free space or no obvious substrate, such as those found during organogenesis of mesenchymal organs including the embryonic skull. Through ex vivo imaging, biophysical modeling, and perturbation experiments, we find that mechanical feedback between cell fate and stiffness drives bone expansion and controls bone size in vivo. This mechanical feedback system is sufficient to propagate a wave of differentiation that establishes a collagen gradient which we find sufficient to describe patterns of osteoblast motion. Our work provides a mechanism for coordinated motion that may not rely upon cell migration but on emergent properties of the mesenchymal collective. Identification of such alternative mechanisms of mechanochemical coupling between differentiation and morphogenesis will help in understanding how directed cellular motility arises in complex environments with inhomogeneous material properties.
细胞运动是组织形态发生的一个关键特征,通常由迁移驱动。然而,在几乎没有自由空间或没有明显底物的情况下,迁移并不一定能解释细胞运动,例如在包括胚胎颅骨在内的间充质器官的器官发生过程中所发现的情况。通过体外成像、生物物理建模和扰动实验,我们发现细胞命运和硬度之间的机械反馈驱动体内骨扩张并控制骨大小。这种机械反馈系统足以传播分化波,从而建立胶原梯度,我们发现该梯度足以描述成骨细胞运动模式。我们的工作提供了一种协调运动的机制,这种机制可能不依赖于细胞迁移,而是依赖于间充质集体的涌现特性。识别分化与形态发生之间这种机械化学耦合的替代机制,将有助于理解在具有不均匀材料特性的复杂环境中定向细胞运动是如何产生的。