采用机器人微量移液器对生物素化微珠进行纳牛顿级粘附力测量。

Nanonewton scale adhesion force measurements on biotinylated microbeads with a robotic micropipette.

机构信息

ELTE Eötvös Loránd University, Department of Biological Physics, Budapest, Hungary; CellSorter Company for Innovations, Erdőalja út 174, H-1037 Budapest, Hungary.

Budapest University of Technology and Economics, Department of Hydrodynamic System, Budapest, Hungary.

出版信息

J Colloid Interface Sci. 2021 Nov 15;602:291-299. doi: 10.1016/j.jcis.2021.05.180. Epub 2021 Jun 3.

Abstract

Binding force between biomolecules has a crucial role in most biological processes. Receptor-ligand interactions transmit physical forces and signals simultaneously. Previously, we employed a robotic micropipette both in live cell and microbead adhesion studies to explore the adhesion force of biomolecules such as cell surface receptors including specific integrins on immune cells. Here we apply standard computational fluid dynamics simulations to reveal the detailed physical background of the flow generated by the micropipette when probing microbead adhesion on functionalized surfaces. Measuring the aspiration pressure needed to pick up the biotinylated 10 μm beads on avidin coated surfaces and converting it to a hydrodynamic lifting force on the basis of simulations, we found an unbinding force of 12 ± 2 nN, when targeting the beads manually; robotic targeting resulted in 9 ± 4 nN (mean ± SD). We measured and simulated the effect of the targeting offset, when the microbead was out of the axis (off-axis)of the micropipette. According to the simulations, the higher offset resulted in a higher lifting force acting on the bead. Considering this effect, we could readily correct the impact of the targeting offset to renormalize the experimental data. Horizontal force and torque also appeared in simulations in case of a targeting offset. Surprisingly, simulations show that the lifting force acting on the bead reaches a maximum at a flow rate of ~ 5 μl/s if the targeting offset is not very high (<5 μm). Further increasing the flow rate decreases the lifting force. We attribute this effect to the spherical geometry of the bead. We predict that higher flow rates cannot increase the hydrodynamic lifting force acting on the precisely targeted microbead, setting a fundamental force limit (16 nN in our setup) for manipulating microbeads with a micropipette perpendicular to the supporting surface. In order to extend the force range, we propose the offset targeting of microbeads.

摘要

生物分子之间的结合力在大多数生物过程中起着至关重要的作用。受体-配体相互作用同时传递物理力和信号。以前,我们在活细胞和微珠粘附研究中使用机器人微管,以探索生物分子(如免疫细胞表面受体中的特定整合素)的粘附力。在这里,我们应用标准计算流体动力学模拟来揭示微管探测功能化表面上微珠粘附时产生的流动的详细物理背景。测量从亲和素涂层表面上吸取生物素化 10 µm 微珠所需的抽吸压力,并根据模拟将其转换为微珠上的流体动力提升力,当手动靶向微珠时,我们发现解吸力为 12 ± 2 nN;机器人靶向则产生 9 ± 4 nN(平均值 ± 标准差)。我们测量并模拟了微珠不在微管轴上(离轴)时的靶向偏移的影响。根据模拟,更高的偏移会导致作用在微珠上的提升力更高。考虑到这种效应,我们可以轻松地纠正靶向偏移的影响,以对实验数据进行归一化。在存在靶向偏移的情况下,模拟中还出现了水平力和扭矩。令人惊讶的是,如果靶向偏移不是很高(<5 µm),模拟表明作用在微珠上的提升力在流速约为 5 µl/s 时达到最大值。进一步增加流速会降低提升力。我们将这种效应归因于微珠的球形几何形状。我们预测,如果没有非常高的流速(在我们的设置中为 16 nN),不能增加精确靶向微珠的流体动力提升力,从而为使用垂直于支撑表面的微管操纵微珠设定了基本的力限制。为了扩展力范围,我们提出了微珠的偏移靶向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索