Suppr超能文献

分区 EDGE 装置中动态吸附对气泡形成和聚并的影响。

Effects of dynamic adsorption on bubble formation and coalescence in partitioned-EDGE devices.

机构信息

Wageningen University, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.

Wageningen University, Food Process Engineering Group, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.

出版信息

J Colloid Interface Sci. 2021 Nov 15;602:316-324. doi: 10.1016/j.jcis.2021.06.014. Epub 2021 Jun 4.

Abstract

HYPOTHESIS

Dynamic adsorption effects can play a crucial role in bubble formation and stabilization. We hypothesize that microfluidic tools provide direct insights to these effects, and that the final bubble size depends on the intersection of time scales for bubble formation versus adsorption of proteins.

EXPERIMENTS

We use a microfluidic device to study Laplace pressure-driven formation of bubbles that are stabilized by whey proteins. Bubble behavior is studied as a function of the pressure difference imposed across the pores (P), and thus the bubble formation time (τ, ranging from μs to s), using highspeed recordings, quasi-static pressure arguments and a semi-empirical coalescence model.

FINDINGS

We observe two distinct bubble formation regimes, delimited by the pressure difference required to initiate bubble formation in pure water, P= 1400 mbar. When P<1400 mbar, protein adsorption is a requisite to lower the surface tension and initialize bubble formation. Individual bubbles (fixed d~ 25 μm) are formed slowly with τ≫1 ms. When P exceeds 1400 mbar, bubbles (fixed d~ 16 μm) experience no adsorption lag and thus are formed at steeply increasing frequency, with τ < 1 ms. Interaction between these bubbles causes finite coalescence to a diameter d that increases for lower τ. A minimum time of 0.4 ms is needed to immediately stabilize individual bubbles. Our study provides a promising microfluidic tool to study bubble formation and coalescence dynamics simultaneously.

摘要

假设

动态吸附效应在气泡的形成和稳定中起着至关重要的作用。我们假设微流控工具可以提供对这些效应的直接洞察,并且最终的气泡尺寸取决于气泡形成和蛋白质吸附之间的时间尺度的交点。

实验

我们使用微流控设备研究了乳清蛋白稳定的 Laplace 压力驱动气泡的形成。通过高速记录、准静态压力论证和半经验聚结模型,研究了气泡行为作为跨孔压差(P)的函数,即气泡形成时间(τ,范围从μs 到 s)。

发现

我们观察到两个不同的气泡形成区域,由在纯水中引发气泡形成所需的压差 P=1400 mbar 来限定。当 P<1400 mbar 时,蛋白质吸附是降低表面张力和初始气泡形成的必要条件。单个气泡(固定 d25μm)形成缓慢,τ≫1 ms。当 P 超过 1400 mbar 时,气泡(固定 d16μm)没有吸附滞后,因此以陡峭增加的频率形成,τ<1ms。这些气泡之间的相互作用导致有限的聚结到直径 d 增加的程度随 τ 降低。立即稳定单个气泡需要 0.4ms 的最小时间。我们的研究提供了一种有前途的微流控工具,可以同时研究气泡的形成和聚结动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验