Suppr超能文献

左颞叶中语义构成与语义关联的分离。

Disentangling Semantic Composition and Semantic Association in the Left Temporal Lobe.

机构信息

NYUAD Institute, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates

NYUAD Institute, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.

出版信息

J Neurosci. 2021 Jul 28;41(30):6526-6538. doi: 10.1523/JNEUROSCI.2317-20.2021. Epub 2021 Jun 15.

Abstract

Although composing two words into a complex representation (e.g., "coffee cake") is conceptually different from forming associations between a pair of words (e.g., "coffee, cake"), the brain regions supporting semantic composition have also been implicated for associative encoding. Here, we adopted a two-word magnetoencephalography (MEG) paradigm which varies compositionality ("French/Korean cheese" vs "France/Korea cheese") and strength of association ("France/French cheese" vs "Korea/Korean cheese") between the two words. We collected MEG data while 42 English speakers (24 females) viewed the two words successively in the scanner, and we applied both univariate regression analyses and multivariate pattern classification to the source estimates of the two words. We show that the left anterior temporal lobe (LATL) and left middle temporal lobe (LMTL) are distinctively modulated by semantic composition and semantic association. Specifically, the LATL is mostly sensitive to high-association compositional phrases, while the LMTL responds more to low-association compositional phrases. Pattern-based directed connectivity analyses further revealed a continuous information flow from the anterior to the middle temporal region, suggesting that the integration of adjective and noun properties originated earlier in the LATL is consistently delivered to the LMTL when the complex meaning is newly encountered. Taken together, our findings shed light into a functional dissociation within the left temporal lobe for compositional and distributional semantic processing. Prior studies on semantic composition and associative encoding have been conducted independently within the subfields of language and memory, and they typically adopt similar two-word experimental paradigms. However, no direct comparison has been made on the neural substrates of the two processes. The current study relates the two streams of literature, and appeals to audiences in both subfields within cognitive neuroscience. Disentangling the neural computations for semantic composition and association also offers insight into modeling compositional and distributional semantics, which has been the subject of much discussion in natural language processing and cognitive science.

摘要

虽然将两个词组合成一个复杂的表示形式(例如,“咖啡蛋糕”)在概念上与形成一对词之间的联想(例如,“咖啡,蛋糕”)不同,但支持语义构成的大脑区域也与联想编码有关。在这里,我们采用了一个双词脑磁图(MEG)范式,该范式改变了两个词之间的组合性(“French/Korean cheese”与“France/Korea cheese”)和联想强度(“France/French cheese”与“Korea/Korean cheese”)。我们在 42 名英语使用者(24 名女性)在扫描仪中连续观看两个词时收集了 MEG 数据,并对两个词的源估计值应用了单变量回归分析和多变量模式分类。我们表明,左前颞叶(LATL)和左中颞叶(LMTL)分别受到语义构成和语义联想的调节。具体来说,LATL 对高关联组合短语最敏感,而 LMTL 对低关联组合短语的反应更强烈。基于模式的有向连通性分析进一步揭示了从前到中颞区域的连续信息流,表明在遇到新的复杂含义时,最初起源于 LATL 的形容词和名词属性的整合会持续传递到 LMTL。总之,我们的研究结果揭示了左颞叶内的功能分离,用于组合和分布语义处理。语义构成和联想编码的先前研究分别在语言和记忆领域的子领域中进行,它们通常采用类似的双词实验范式。然而,这两个过程的神经基质尚未进行直接比较。本研究将这两个文献流联系起来,并呼吁认知神经科学两个子领域的受众关注。区分语义构成和联想的神经计算也为组合和分布语义的建模提供了深入的了解,这一直是自然语言处理和认知科学领域的讨论热点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e79/8318083/d5568225cb82/SN-JNSJ210441F001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验