Suppr超能文献

通过靶向重编程代谢克服化疗耐药性:胰腺导管腺癌的阿喀琉斯之踵。

Overcoming chemoresistance by targeting reprogrammed metabolism: the Achilles' heel of pancreatic ductal adenocarcinoma.

机构信息

Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong'An Road, Shanghai, 200032, People's Republic of China.

Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.

出版信息

Cell Mol Life Sci. 2021 Jul;78(14):5505-5526. doi: 10.1007/s00018-021-03866-y. Epub 2021 Jun 15.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death due to its late diagnosis that removes the opportunity for surgery and metabolic plasticity that leads to resistance to chemotherapy. Metabolic reprogramming related to glucose, lipid, and amino acid metabolism in PDAC not only enables the cancer to thrive and survive under hypovascular, nutrient-poor and hypoxic microenvironments, but also confers chemoresistance, which contributes to the poor prognosis of PDAC. In this review, we systematically elucidate the mechanism of chemotherapy resistance and the relationship of metabolic programming features with resistance to anticancer drugs in PDAC. Targeting the critical enzymes and/or transporters involved in glucose, lipid, and amino acid metabolism may be a promising approach to overcome chemoresistance in PDAC. Consequently, regulating metabolism could be used as a strategy against PDAC and could improve the prognosis of PDAC.

摘要

胰腺导管腺癌 (PDAC) 是癌症相关死亡的主要原因之一,其晚期诊断剥夺了手术的机会,并且代谢可塑性导致对化疗的耐药性。PDAC 中与葡萄糖、脂质和氨基酸代谢相关的代谢重编程不仅使癌症能够在血管稀少、营养贫乏和缺氧的微环境中茁壮成长和存活,而且还赋予了化疗耐药性,这导致 PDAC 的预后不良。在这篇综述中,我们系统地阐明了 PDAC 中化疗耐药性的机制以及代谢编程特征与抗癌药物耐药性的关系。针对涉及葡萄糖、脂质和氨基酸代谢的关键酶和/或转运蛋白可能是克服 PDAC 化疗耐药性的一种有前途的方法。因此,调节代谢可以作为对抗 PDAC 的一种策略,并可以改善 PDAC 的预后。

相似文献

1
Overcoming chemoresistance by targeting reprogrammed metabolism: the Achilles' heel of pancreatic ductal adenocarcinoma.
Cell Mol Life Sci. 2021 Jul;78(14):5505-5526. doi: 10.1007/s00018-021-03866-y. Epub 2021 Jun 15.
3
Chemoresistance in pancreatic ductal adenocarcinoma: Overcoming resistance to therapy.
Adv Cancer Res. 2023;159:285-341. doi: 10.1016/bs.acr.2023.02.010. Epub 2023 Apr 18.
4
Periostin promotes the chemotherapy resistance to gemcitabine in pancreatic cancer.
Tumour Biol. 2016 Nov;37(11):15283-15291. doi: 10.1007/s13277-016-5321-6. Epub 2016 Sep 30.
5
Novel agents for pancreatic ductal adenocarcinoma: emerging therapeutics and future directions.
J Hematol Oncol. 2018 Jan 31;11(1):14. doi: 10.1186/s13045-017-0551-7.
6
Targeting Pancreatic Ductal Adenocarcinoma (PDAC).
Cell Physiol Biochem. 2021 Jan 29;55(1):61-90. doi: 10.33594/000000326.
8
Ubiquitin-specific protease 7 is a druggable target that is essential for pancreatic cancer growth and chemoresistance.
Invest New Drugs. 2020 Dec;38(6):1707-1716. doi: 10.1007/s10637-020-00951-0. Epub 2020 May 28.
9
Therapeutic trends in pancreatic ductal adenocarcinoma (PDAC).
Expert Opin Investig Drugs. 2019 Feb;28(2):161-177. doi: 10.1080/13543784.2019.1557145. Epub 2018 Dec 16.
10
Relationship between LAT1 expression and resistance to chemotherapy in pancreatic ductal adenocarcinoma.
Cancer Chemother Pharmacol. 2018 Jan;81(1):141-153. doi: 10.1007/s00280-017-3477-4. Epub 2017 Nov 17.

引用本文的文献

1
Cancer stem cells: landscape, challenges and emerging therapeutic innovations.
Signal Transduct Target Ther. 2025 Aug 5;10(1):248. doi: 10.1038/s41392-025-02360-2.
6
Reshaping the Pancreatic Cancer Microenvironment at Different Stages with Chemotherapy.
Cancers (Basel). 2023 Apr 25;15(9):2448. doi: 10.3390/cancers15092448.
7
AdipoRon and Pancreatic Ductal Adenocarcinoma: a future perspective in overcoming chemotherapy-induced resistance?
Cancer Drug Resist. 2022 Jun 21;5(3):625-636. doi: 10.20517/cdr.2022.34. eCollection 2022.
8
Targeting -GlcNAcylation to overcome resistance to anti-cancer therapies.
Front Oncol. 2022 Aug 17;12:960312. doi: 10.3389/fonc.2022.960312. eCollection 2022.
10
CDKN3 Overcomes Bladder Cancer Cisplatin Resistance via LDHA-Dependent Glycolysis Reprogramming.
Onco Targets Ther. 2022 Mar 26;15:299-311. doi: 10.2147/OTT.S358008. eCollection 2022.

本文引用的文献

1
Lipid Metabolism in Tumor-Associated Macrophages.
Adv Exp Med Biol. 2021;1316:87-101. doi: 10.1007/978-981-33-6785-2_6.
4
Studying the Anti-Tumor Effects of siRNA Gene Silencing of Some Metabolic Genes in Pancreatic Ductal Adenocarcinoma.
Curr Mol Pharmacol. 2021 Oct 25;14(4):604-619. doi: 10.2174/1874467213666201012162250.
5
Metabolic plasticity imparts erlotinib-resistance in pancreatic cancer by upregulating glucose-6-phosphate dehydrogenase.
Cancer Metab. 2020 Sep 21;8:19. doi: 10.1186/s40170-020-00226-5. eCollection 2020.
6
Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer.
Cancers (Basel). 2020 Aug 12;12(8):2252. doi: 10.3390/cancers12082252.
7
Pancreatic cancer.
Lancet. 2020 Jun 27;395(10242):2008-2020. doi: 10.1016/S0140-6736(20)30974-0.
8
CD147 promotes DNA damage response and gemcitabine resistance via targeting ATM/ATR/p53 and affects prognosis in pancreatic cancer.
Biochem Biophys Res Commun. 2020 Jul 12;528(1):62-70. doi: 10.1016/j.bbrc.2020.05.005. Epub 2020 May 23.
9
PFKFB2 regulates glycolysis and proliferation in pancreatic cancer cells.
Mol Cell Biochem. 2020 Jul;470(1-2):115-129. doi: 10.1007/s11010-020-03751-5. Epub 2020 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验