Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA.
Department of Neurology, Stanford University School of Medicine, Stanford, California, USA.
Oper Neurosurg (Hagerstown). 2021 Aug 16;21(3):E180-E186. doi: 10.1093/ons/opab182.
Precise targeting of cortical surface electrodes to epileptogenic regions defined by anatomic and electrophysiological guideposts remains a surgical challenge during implantation of responsive neurostimulation (RNS) devices.
To describe a hybrid fluoroscopic and neurophysiological technique for targeting of subdural cortical surface electrodes to anatomic regions with limited direct visualization, such as the interhemispheric fissure.
Intraoperative two-dimensional (2D) fluoroscopy was used to colocalize and align an electrode for permanent device implantation with a temporary in Situ electrode placed for extraoperative seizure mapping. Intraoperative phase reversal mapping technique was performed to distinguish primary somatosensory and motor cortex.
We applied these techniques to optimize placement of an interhemispheric strip electrode connected to a responsive neurostimulator system for detection and treatment of seizures arising from a large perirolandic cortical malformation. Intraoperative neuromonitoring (IONM) phase reversal technique facilitated neuroanatomic mapping and electrode placement.
In challenging-to-access anatomic regions, fluoroscopy and intraoperative neurophysiology can be employed to augment targeting of neuromodulation electrodes to the site of seizure onset zone or specific neurophysiological biomarkers of clinical interest while minimizing brain retraction.
在植入反应性神经刺激(RNS)装置时,精确地将皮质表面电极靶向到解剖学和电生理引导标志定义的致痫区域仍然是一项手术挑战。
描述一种混合荧光透视和神经生理学技术,用于将硬膜下皮质表面电极靶向到解剖区域,这些区域的直接可视化有限,例如大脑半球间裂。
术中二维(2D)荧光透视术用于将电极与临时放置的用于术后癫痫发作图的电极进行共定位和对齐,以进行永久性设备植入。术中相位反转映射技术用于区分主要体感和运动皮质。
我们将这些技术应用于优化连接到反应性神经刺激器系统的大脑半球间条带电极的放置,以检测和治疗起源于大面积脑皮质发育不良的癫痫发作。术中神经监测(IONM)相位反转技术促进了神经解剖映射和电极放置。
在难以触及的解剖区域,可以使用荧光透视术和术中神经生理学来增强对神经调节电极的靶向定位,以达到癫痫起始区或特定神经生理学生物标志物的位置,同时将脑牵拉最小化。