Suppr超能文献

用于癫痫治疗的深部脑刺激和皮层刺激

Deep brain and cortical stimulation for epilepsy.

作者信息

Sprengers Mathieu, Vonck Kristl, Carrette Evelien, Marson Anthony G, Boon Paul

机构信息

Department of Neurology, Ghent University Hospital, 1K12, 185 De Pintelaan, Ghent, Belgium, B-9000.

出版信息

Cochrane Database Syst Rev. 2017 Jul 18;7(7):CD008497. doi: 10.1002/14651858.CD008497.pub3.

Abstract

BACKGROUND

Despite optimal medical treatment, including epilepsy surgery, many epilepsy patients have uncontrolled seizures. Since the 1970s interest has grown in invasive intracranial neurostimulation as a treatment for these patients. Intracranial stimulation includes both deep brain stimulation (DBS) (stimulation through depth electrodes) and cortical stimulation (subdural electrodes). This is an updated version of a previous Cochrane review published in 2014.

OBJECTIVES

To assess the efficacy, safety and tolerability of DBS and cortical stimulation for refractory epilepsy based on randomized controlled trials (RCTs).

SEARCH METHODS

We searched the Cochrane Epilepsy Group Specialized Register on 29 September 2015, but it was not necessary to update this search, because records in the Specialized Register are included in CENTRAL. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 11, 5 November 2016), PubMed (5 November 2016), ClinicalTrials.gov (5 November 2016), the WHO International Clinical Trials Registry Platform ICTRP (5 November 2016) and reference lists of retrieved articles. We also contacted device manufacturers and other researchers in the field. No language restrictions were imposed.

SELECTION CRITERIA

RCTs comparing deep brain or cortical stimulation versus sham stimulation, resective surgery, further treatment with antiepileptic drugs or other neurostimulation treatments (including vagus nerve stimulation).

DATA COLLECTION AND ANALYSIS

Four review authors independently selected trials for inclusion. Two review authors independently extracted the relevant data and assessed trial quality and overall quality of evidence. The outcomes investigated were seizure freedom, responder rate, percentage seizure frequency reduction, adverse events, neuropsychological outcome and quality of life. If additional data were needed, the study investigators were contacted. Results were analysed and reported separately for different intracranial targets for reasons of clinical heterogeneity.

MAIN RESULTS

Twelve RCTs were identified, eleven of these compared one to three months of intracranial neurostimulation with sham stimulation. One trial was on anterior thalamic DBS (n = 109; 109 treatment periods); two trials on centromedian thalamic DBS (n = 20; 40 treatment periods), but only one of the trials (n = 7; 14 treatment periods) reported sufficient information for inclusion in the quantitative meta-analysis; three trials on cerebellar stimulation (n = 22; 39 treatment periods); three trials on hippocampal DBS (n = 15; 21 treatment periods); one trial on nucleus accumbens DBS (n = 4; 8 treatment periods); and one trial on responsive ictal onset zone stimulation (n = 191; 191 treatment periods). In addition, one small RCT (n = 6) compared six months of hippocampal DBS versus sham stimulation. Evidence of selective reporting was present in four trials and the possibility of a carryover effect complicating interpretation of the results could not be excluded in five cross-over trials without any or a sufficient washout period. Moderate-quality evidence could not demonstrate statistically or clinically significant changes in the proportion of patients who were seizure-free or experienced a 50% or greater reduction in seizure frequency (primary outcome measures) after one to three months of anterior thalamic DBS in (multi)focal epilepsy, responsive ictal onset zone stimulation in (multi)focal epilepsy patients and hippocampal DBS in (medial) temporal lobe epilepsy. However, a statistically significant reduction in seizure frequency was found for anterior thalamic DBS (mean difference (MD), -17.4% compared to sham stimulation; 95% confidence interval (CI) -31.2 to -1.0; high-quality evidence), responsive ictal onset zone stimulation (MD -24.9%; 95% CI -40.1 to -6.0; high-quality evidence) and hippocampal DBS (MD -28.1%; 95% CI -34.1 to -22.2; moderate-quality evidence). Both anterior thalamic DBS and responsive ictal onset zone stimulation do not have a clinically meaningful impact on quality life after three months of stimulation (high-quality evidence). Electrode implantation resulted in postoperative asymptomatic intracranial haemorrhage in 1.6% to 3.7% of the patients included in the two largest trials and 2.0% to 4.5% had postoperative soft tissue infections (9.4% to 12.7% after five years); no patient reported permanent symptomatic sequelae. Anterior thalamic DBS was associated with fewer epilepsy-associated injuries (7.4 versus 25.5%; P = 0.01) but higher rates of self-reported depression (14.8 versus 1.8%; P = 0.02) and subjective memory impairment (13.8 versus 1.8%; P = 0.03); there were no significant differences in formal neuropsychological testing results between the groups. Responsive ictal-onset zone stimulation seemed to be well-tolerated with few side effects.The limited number of patients preclude firm statements on safety and tolerability of hippocampal DBS. With regards to centromedian thalamic DBS, nucleus accumbens DBS and cerebellar stimulation, no statistically significant effects could be demonstrated but evidence is of only low to very low quality.

AUTHORS' CONCLUSIONS: Except for one very small RCT, only short-term RCTs on intracranial neurostimulation for epilepsy are available. Compared to sham stimulation, one to three months of anterior thalamic DBS ((multi)focal epilepsy), responsive ictal onset zone stimulation ((multi)focal epilepsy) and hippocampal DBS (temporal lobe epilepsy) moderately reduce seizure frequency in refractory epilepsy patients. Anterior thalamic DBS is associated with higher rates of self-reported depression and subjective memory impairment. There is insufficient evidence to make firm conclusive statements on the efficacy and safety of hippocampal DBS, centromedian thalamic DBS, nucleus accumbens DBS and cerebellar stimulation. There is a need for more, large and well-designed RCTs to validate and optimize the efficacy and safety of invasive intracranial neurostimulation treatments.

摘要

背景

尽管进行了包括癫痫手术在内的最佳药物治疗,许多癫痫患者的癫痫发作仍无法得到控制。自20世纪70年代以来,作为这些患者的一种治疗方法,侵入性颅内神经刺激受到的关注日益增加。颅内刺激包括深部脑刺激(DBS)(通过深度电极进行刺激)和皮质刺激(硬膜下电极)。这是2014年发表的上一篇Cochrane系统评价的更新版本。

目的

基于随机对照试验(RCT)评估DBS和皮质刺激治疗难治性癫痫的疗效、安全性和耐受性。

检索方法

我们于2015年9月29日检索了Cochrane癫痫专业组专门注册库,但无需更新此检索,因为专门注册库中的记录已包含在CENTRAL中。我们检索了Cochrane对照试验中心注册库(CENTRAL)(Cochrane图书馆2016年第11期,2016年11月5日)、PubMed(2016年11月5日)、ClinicalTrials.gov(2016年11月5日)、世界卫生组织国际临床试验注册平台ICTRP(2016年11月5日)以及检索到的文章的参考文献列表。我们还联系了设备制造商和该领域的其他研究人员。未设语言限制。

选择标准

比较深部脑刺激或皮质刺激与假刺激、切除性手术、进一步使用抗癫痫药物治疗或其他神经刺激治疗(包括迷走神经刺激)的RCT。

数据收集与分析

四位综述作者独立选择纳入试验。两位综述作者独立提取相关数据并评估试验质量和证据的总体质量。所研究的结局包括无癫痫发作、缓解率、癫痫发作频率降低百分比、不良事件、神经心理结局和生活质量。如果需要额外数据,则联系研究调查人员。由于临床异质性,针对不同颅内靶点分别分析并报告结果。

主要结果

共识别出12项RCT,其中11项将一至三个月的颅内神经刺激与假刺激进行了比较。一项试验是关于丘脑前核DBS(n = 109;109个治疗周期);两项试验是关于中央中核丘脑DBS(n = 20;40个治疗周期),但只有一项试验(n = 7;14个治疗周期)报告了足够的信息可纳入定量Meta分析;三项试验是关于小脑刺激(n = 22;39个治疗周期);三项试验是关于海马DBS(n = 15;21个治疗周期);一项试验是关于伏隔核DBS(n = 4;8个治疗周期);以及一项试验是关于发作期反应性起始区刺激(n = 191;191个治疗周期)。此外,一项小型RCT(n = 6)比较了六个月的海马DBS与假刺激。四项试验存在选择性报告的证据,在五项没有任何洗脱期或洗脱期不足的交叉试验中,不能排除存在使结果解释复杂化的残留效应。中等质量证据无法证明在(多)灶性癫痫患者中进行一至三个月的丘脑前核DBS、(多)灶性癫痫患者的发作期反应性起始区刺激以及(内侧)颞叶癫痫患者的海马DBS后,无癫痫发作或癫痫发作频率降低50%或更多的患者比例有统计学或临床意义的变化(主要结局指标)。然而,发现丘脑前核DBS(平均差(MD),与假刺激相比为-17.4%;95%置信区间(CI)-31.2至-1.0;高质量证据)、发作期反应性起始区刺激(MD -24.9%;95% CI -40.1至-6.0;高质量证据)和海马DBS(MD -28.1%;95% CI -34.1至-22.2;中等质量证据)的癫痫发作频率有统计学显著降低。丘脑前核DBS和发作期反应性起始区刺激在刺激三个月后对生活质量均无临床意义的影响(高质量证据)。在两项最大的试验中,电极植入导致1.6%至3.7%的患者术后出现无症状颅内出血,2.0%至4.5%的患者术后出现软组织感染(五年后为9.4%至12.7%);没有患者报告有永久性症状性后遗症。丘脑前核DBS与较少的癫痫相关损伤相关(7.4%对25.5%;P = 0.01),但自我报告的抑郁发生率较高(14.8%对1.8%;P = 0.02)和主观记忆障碍发生率较高(13.8%对1.8%;P = 0.03);两组之间在正式神经心理学测试结果上无显著差异。发作期反应性起始区刺激似乎耐受性良好,副作用很少。患者数量有限,无法就海马DBS的安全性和耐受性作出确凿的陈述。关于中央中核丘脑DBS、伏隔核DBS和小脑刺激,未发现有统计学显著效应,但证据质量仅为低至极低。

作者结论

除一项非常小的RCT外,目前仅有关于颅内神经刺激治疗癫痫的短期RCT。与假刺激相比,一至三个月的丘脑前核DBS((多)灶性癫痫)、发作期反应性起始区刺激((多)灶性癫痫)和海马DBS(颞叶癫痫)可适度降低难治性癫痫患者的癫痫发作频率。丘脑前核DBS与较高的自我报告抑郁发生率和主观记忆障碍发生率相关。关于海马DBS、中央中核丘脑DBS、伏隔核DBS和小脑刺激的疗效和安全性,尚无足够证据作出确凿的结论性陈述。需要更多大规模、设计良好的RCT来验证和优化侵入性颅内神经刺激治疗的疗效和安全性。

相似文献

1
Deep brain and cortical stimulation for epilepsy.
Cochrane Database Syst Rev. 2017 Jul 18;7(7):CD008497. doi: 10.1002/14651858.CD008497.pub3.
2
Deep brain and cortical stimulation for epilepsy.
Cochrane Database Syst Rev. 2014 Jun 17(6):CD008497. doi: 10.1002/14651858.CD008497.pub2.
3
Yoga for epilepsy.
Cochrane Database Syst Rev. 2017 Oct 5;10(10):CD001524. doi: 10.1002/14651858.CD001524.pub3.
4
Treatments for seizures in catamenial (menstrual-related) epilepsy.
Cochrane Database Syst Rev. 2021 Sep 16;9(9):CD013225. doi: 10.1002/14651858.CD013225.pub3.
5
Pregabalin add-on for drug-resistant focal epilepsy.
Cochrane Database Syst Rev. 2022 Mar 29;3(3):CD005612. doi: 10.1002/14651858.CD005612.pub5.
6
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Oct 19;10(10):CD012859. doi: 10.1002/14651858.CD012859.pub2.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Dec 22;12(12):CD011535. doi: 10.1002/14651858.CD011535.pub2.
8
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
9
Rufinamide add-on therapy for refractory epilepsy.
Cochrane Database Syst Rev. 2018 Apr 25;4(4):CD011772. doi: 10.1002/14651858.CD011772.pub2.
10
Antiepileptic drug monotherapy for epilepsy: a network meta-analysis of individual participant data.
Cochrane Database Syst Rev. 2022 Apr 1;4(4):CD011412. doi: 10.1002/14651858.CD011412.pub4.

引用本文的文献

1
Medial pulvinar stimulation for focal drug-resistant epilepsy: interim 12-month results of the PULSE study.
Front Neurol. 2024 Dec 10;15:1480819. doi: 10.3389/fneur.2024.1480819. eCollection 2024.
2
A Comprehensive Review of Recent Trends in Surgical Approaches for Epilepsy Management.
Cureus. 2024 Oct 17;16(10):e71715. doi: 10.7759/cureus.71715. eCollection 2024 Oct.
3
Dye-Based Fluorescent Organic Nanoparticles, New Promising Tools for Optogenetics.
Adv Healthc Mater. 2025 Jan;14(2):e2402132. doi: 10.1002/adhm.202402132. Epub 2024 Sep 12.
4
Micro to macro scale anatomical analysis of the human hippocampal arteries with synchrotron hierarchical phase-contrast tomography.
Surg Radiol Anat. 2024 Nov;46(11):1753-1760. doi: 10.1007/s00276-024-03467-x. Epub 2024 Sep 3.
6
A pediatrician's guide to epilepsy surgery.
Curr Probl Pediatr Adolesc Health Care. 2024 Jul;54(7):101578. doi: 10.1016/j.cppeds.2024.101578. Epub 2024 Mar 14.
7
Viral Vector-Based Gene Therapy for Epilepsy: What Does the Future Hold?
Mol Diagn Ther. 2024 Jan;28(1):5-13. doi: 10.1007/s40291-023-00687-6. Epub 2023 Dec 16.
8
Neurostimulation as a Putative Method for the Treatment of Drug-resistant Epilepsy in Patient and Animal Models of Epilepsy.
Basic Clin Neurosci. 2023 Jan-Feb;14(1):1-18. doi: 10.32598/bcn.2022.2360.4. Epub 2023 Jan 1.
10
The little brain and the seahorse: Cerebellar-hippocampal interactions.
Front Syst Neurosci. 2023 Mar 23;17:1158492. doi: 10.3389/fnsys.2023.1158492. eCollection 2023.

本文引用的文献

3
[Invasive stimulation procedures and EEG diagnostics in epilepsy].
Nervenarzt. 2016 Aug;87(8):829-37. doi: 10.1007/s00115-016-0159-0.
4
Implant Site Infection and Bone Flap Osteomyelitis Associated with the NeuroPace Responsive Neurostimulation System.
World Neurosurg. 2016 Apr;88:687.e1-687.e6. doi: 10.1016/j.wneu.2015.11.106. Epub 2015 Dec 29.
5
Differential neuropsychological outcomes following targeted responsive neurostimulation for partial-onset epilepsy.
Epilepsia. 2015 Nov;56(11):1836-44. doi: 10.1111/epi.13191. Epub 2015 Sep 19.
6
Surgery for epilepsy.
Cochrane Database Syst Rev. 2015 Jul 1(7):CD010541. doi: 10.1002/14651858.CD010541.pub2.
8
Nucleus accumbens stimulation in partial epilepsy--a randomized controlled case series.
Epilepsia. 2015 Jun;56(6):e78-82. doi: 10.1111/epi.12999. Epub 2015 May 4.
9
Vagus nerve stimulation for partial seizures.
Cochrane Database Syst Rev. 2015 Apr 3;2015(4):CD002896. doi: 10.1002/14651858.CD002896.pub2.
10
Quality of life and mood in patients with medically intractable epilepsy treated with targeted responsive neurostimulation.
Epilepsy Behav. 2015 Apr;45:242-7. doi: 10.1016/j.yebeh.2015.01.012. Epub 2015 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验