Suppr超能文献

模块之间的尖峰信号传输和模块化神经元网络中尖峰活动的可预测性。

Spike signal transmission between modules and the predictability of spike activity in modular neuronal networks.

机构信息

Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai 200240, China.

出版信息

J Theor Biol. 2021 Oct 7;526:110811. doi: 10.1016/j.jtbi.2021.110811. Epub 2021 Jun 13.

Abstract

Modularity is a common feature of the nervous system across species and scales. Although it has been qualitatively investigated in network science, very little is known about how it affects spike signal transmission in neuronal networks at the mesoscopic level. Here, a neuronal network model is built to simulate dynamic interactions among different modules of neuronal networks. This neuronal network model follows the organizational principle of modular structure. The neurons can generate spikes like biological neurons, and changes in the strength of synaptic connections conform to the STDP learning rule. Based on this neuronal network model, we first quantitatively studied whether and to what extent the connectivity within and between modules can affect spike signal transmission, and found that spike signal transmission heavily depends on the connectivity between modules, but has little to do with the connectivity within modules. More importantly, we further found that the spike activity of a module can be predicted according to the spike activities of its adjacent modules through building a resting-state functional connectivity matrix.

摘要

模块化是跨物种和尺度的神经系统的共同特征。尽管在网络科学中已经对其进行了定性研究,但对于它如何在介观水平上影响神经元网络中的尖峰信号传输知之甚少。在这里,构建了一个神经元网络模型来模拟神经元网络不同模块之间的动态相互作用。该神经元网络模型遵循模块化结构的组织原则。神经元可以像生物神经元一样产生尖峰,并且突触连接强度的变化符合 STDP 学习规则。基于这个神经元网络模型,我们首先定量研究了模块内和模块间的连接是否以及在多大程度上会影响尖峰信号传输,并发现尖峰信号传输严重依赖于模块之间的连接,但与模块内的连接关系不大。更重要的是,我们进一步发现通过构建静息状态功能连接矩阵,可以根据相邻模块的尖峰活动来预测一个模块的尖峰活动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验