Suppr超能文献

通过尖峰三重相互作用自主出现连接组装体。

Autonomous emergence of connectivity assemblies via spike triplet interactions.

机构信息

Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany.

Technical University of Munich, School of Life Sciences, Freising, Germany.

出版信息

PLoS Comput Biol. 2020 May 8;16(5):e1007835. doi: 10.1371/journal.pcbi.1007835. eCollection 2020 May.

Abstract

Non-random connectivity can emerge without structured external input driven by activity-dependent mechanisms of synaptic plasticity based on precise spiking patterns. Here we analyze the emergence of global structures in recurrent networks based on a triplet model of spike timing dependent plasticity (STDP), which depends on the interactions of three precisely-timed spikes, and can describe plasticity experiments with varying spike frequency better than the classical pair-based STDP rule. We derive synaptic changes arising from correlations up to third-order and describe them as the sum of structural motifs, which determine how any spike in the network influences a given synaptic connection through possible connectivity paths. This motif expansion framework reveals novel structural motifs under the triplet STDP rule, which support the formation of bidirectional connections and ultimately the spontaneous emergence of global network structure in the form of self-connected groups of neurons, or assemblies. We propose that under triplet STDP assembly structure can emerge without the need for externally patterned inputs or assuming a symmetric pair-based STDP rule common in previous studies. The emergence of non-random network structure under triplet STDP occurs through internally-generated higher-order correlations, which are ubiquitous in natural stimuli and neuronal spiking activity, and important for coding. We further demonstrate how neuromodulatory mechanisms that modulate the shape of the triplet STDP rule or the synaptic transmission function differentially promote structural motifs underlying the emergence of assemblies, and quantify the differences using graph theoretic measures.

摘要

非随机连接可以在没有结构外部输入的情况下出现,这种连接是由基于精确尖峰模式的突触可塑性活动依赖性机制驱动的。在这里,我们分析了基于尖峰时间依赖性可塑性 (STDP) 三联体模型的递归网络中全局结构的出现,该模型取决于三个精确定时尖峰的相互作用,并且可以比经典的基于对的 STDP 规则更好地描述具有变化尖峰频率的可塑性实验。我们推导出由三阶以上相关性引起的突触变化,并将其描述为结构基元的总和,这些基元决定了网络中的任何尖峰如何通过可能的连接路径影响给定的突触连接。这种基元扩展框架揭示了三联体 STDP 规则下的新结构基元,这些基元支持双向连接的形成,并最终以自连接的神经元群或集合的形式自发出现全局网络结构。我们提出,在三联体 STDP 下,不需要外部模式输入或假设以前研究中常见的对称基于对的 STDP 规则,就可以出现集合结构。三联体 STDP 下非随机网络结构的出现是通过内部产生的高阶相关性实现的,这种相关性在自然刺激和神经元尖峰活动中普遍存在,对编码很重要。我们进一步展示了调节三联体 STDP 规则形状或突触传递功能的神经调制机制如何差异地促进集合出现的结构基元,并使用图论度量来量化差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a346/7239496/e521d70b5770/pcbi.1007835.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验