College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China; College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
Plant Sci. 2021 Aug;309:110954. doi: 10.1016/j.plantsci.2021.110954. Epub 2021 Jun 2.
Powdery mildew caused by Podosphaera xanthii (P. xanthii) severely endangers melon (Cucumis melo L.) production, while the mechanistic understanding about its resistance to powdery mildew remains largely limited. In this study, we integrated transcriptomic and methylomic analyses to explore whether DNA methylation was involved in modulating transcriptional acclimation of melon to P. xanthii infection. Net photosynthetic rate (Pn), stomatal conductance (Gs), actual photochemical efficiency (ФPSII) and maximum PSII quantum yield (Fv/Fm) were significantly decreased in P. xanthii-infected plants relative to uninfected ones (Control), revealing apparent physiological disorders. Totally 4808 differentially expressed genes (DEGs) were identified by global analysis of gene expression in Control and P. xanthii-infected plants. Comparative methylome uncovered that 932 DEGs were associated with hypermethylation, while 603 DEGs were associated with hypomethylation in melon upon P. xanthii infection. Among these differential methylation-involved DEGs, a set of resistance-related genes including R genes and candidate genes in metabolic and defense pathways were further identified, demonstrating that DNA methylation might function as a new regulatory layer for melon resistance to P. xanthii infection. Altogether our study sheds new insights into the molecular mechanisms of melon against powdery mildew and provides some potential targets for improving melon disease resistance in future.
由瓜白粉菌(P. xanthii)引起的白粉病严重威胁着甜瓜(Cucumis melo L.)的生产,而关于其对白粉病的抗性的机制理解在很大程度上仍然有限。在这项研究中,我们整合了转录组和甲基组分析,以探讨 DNA 甲基化是否参与调节甜瓜对 P. xanthii 感染的转录适应。相对于未感染的对照(Control)植物,感染 P. xanthii 的植株的净光合速率(Pn)、气孔导度(Gs)、实际光化学效率(ФPSII)和最大 PSII 量子产量(Fv/Fm)显著降低,表明出现明显的生理障碍。通过对 Control 和 P. xanthii 感染的甜瓜植株进行全局基因表达分析,共鉴定出 4808 个差异表达基因(DEGs)。比较甲基组学揭示,在甜瓜受到 P. xanthii 感染时,有 932 个 DEGs 与超甲基化相关,而 603 个 DEGs 与低甲基化相关。在这些差异甲基化相关的 DEGs 中,一组包括 R 基因在内的与抗性相关的基因和代谢及防御途径中的候选基因被进一步鉴定出来,表明 DNA 甲基化可能作为甜瓜对 P. xanthii 感染抗性的一个新的调控层。总之,本研究为甜瓜对白粉病的分子机制提供了新的见解,并为未来提高甜瓜的抗病性提供了一些潜在的目标。