Liu Jun, Wei Aixiang, Pan Guoxiang, Xiong Qinqin, Chen Fang, Shen Shenghui, Xia Xinhui
Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
Department of Information Science, Xinhua College of Sun Yat-sen University, Guangzhou, 510520, People's Republic of China.
Nanomicro Lett. 2019 Aug 2;11(1):64. doi: 10.1007/s40820-019-0295-8.
Rational design of hybrid carbon host with high electrical conductivity and strong adsorption toward soluble lithium polysulfides is the main challenge for achieving high-performance lithium-sulfur batteries (LSBs). Herein, novel binder-free Ni@N-doped carbon nanospheres (N-CNSs) films as sulfur host are firstly synthesized via a facile combined hydrothermal-atomic layer deposition method. The cross-linked multilayer N-CNSs films can effectively enhance the electrical conductivity of electrode and provide physical blocking "dams" toward the soluble long-chain polysulfides. Moreover, the doped N heteroatoms and superficial NiO layer on Ni layer can work synergistically to suppress the shuttle of lithium polysulfides by effective chemical interaction/adsorption. In virtue of the unique composite architecture and reinforced dual physical and chemical adsorption to the soluble polysulfides, the obtained Ni@N-CNSs/S electrode is demonstrated with enhanced rate performance (816 mAh g at 2 C) and excellent long cycling life (87% after 200 cycles at 0.1 C), much better than N-CNSs/S electrode and other carbon/S counterparts. Our proposed design strategy offers a promising prospect for construction of advanced sulfur cathodes for applications in LSBs and other energy storage systems.
设计具有高导电性且对可溶性锂多硫化物具有强吸附性的混合碳主体是实现高性能锂硫电池(LSBs)的主要挑战。在此,通过一种简便的水热 - 原子层沉积联合方法首次合成了新型无粘结剂的Ni@N掺杂碳纳米球(N - CNSs)薄膜作为硫主体。交联的多层N - CNSs薄膜能够有效提高电极的导电性,并为可溶性长链多硫化物提供物理阻挡“堤坝”。此外,掺杂的N杂原子和Ni层上的表面NiO层可以通过有效的化学相互作用/吸附协同作用来抑制锂多硫化物的穿梭。凭借独特的复合结构以及对可溶性多硫化物增强的物理和化学双重吸附作用,所制备的Ni@N - CNSs/S电极展现出增强的倍率性能(2 C时为816 mAh g)和优异的长循环寿命(0.1 C下200次循环后为87%),远优于N - CNSs/S电极及其他碳/S对应物。我们提出的设计策略为构建用于LSBs和其他储能系统的先进硫阴极提供了广阔前景。