Yang Jinlin, Wang Xiaowei, Dai Wenrui, Lian Xu, Cui Xinhang, Zhang Weichao, Zhang Kexin, Lin Ming, Zou Ruqiang, Loh Kian Ping, Yang Quan-Hong, Chen Wei
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, People's Republic of China.
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
Nanomicro Lett. 2021 Mar 30;13(1):98. doi: 10.1007/s40820-020-00587-y.
Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion-carbonization method. The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores. The thick electrode (~ 19 mg cm) with a high areal capacity of 6.14 mAh cm displays an ultrahigh cycling stability and an outstanding low-temperature performance. Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na but allow the entrance of naked Na into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion-carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g at 30 mA g with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm at 25 °C and 5.32 mAh cm at - 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs.
通过熔融扩散碳化法合成了以超微孔(<0.5纳米)为主的硬碳阳极用于钠离子电池。超微孔主导的碳阳极表现出增强的容量,这源于设计的超微孔额外的钠离子存储位点。厚度约为19毫克/平方厘米、面积容量高达6.14毫安/平方厘米的厚电极表现出超高的循环稳定性和出色的低温性能。硬碳的孔结构对钠离子电池(SIBs)的电化学性能有根本性影响。硬碳的超微孔(<0.5纳米)可作为离子筛,减少溶剂化钠的扩散,但允许裸钠进入孔中,这可以减少电解质与内孔之间的界面接触,而不牺牲快速扩散动力学。在此,提出了一种熔融扩散碳化法,将碳内部的微孔(>1纳米)转化为超微孔(<0.5纳米)。因此,设计的碳阳极在30毫安/克时表现出346毫安/克的增强容量,初始库仑效率(ICE)值高达约80.6%,且大部分容量(约90%)低于1伏。此外,高负载电极(约19毫克/平方厘米)在25℃时面积容量为6.14毫安/平方厘米,在-20℃时为5.32毫安/平方厘米,表现出良好的温度耐受性。基于原位X射线衍射和非原位固态核磁共振结果,设计的超微孔提供了额外的钠存储位点,这主要有助于容量的增强。该策略为高性能钠离子电池的发展显示出良好的潜力。