文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

支架介导的 CRISPR-Cas9 递药系统治疗急性髓细胞白血病。

Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy.

机构信息

Department of Biomedical Engineering, Columbia University, New York, NY, USA.

Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.

出版信息

Sci Adv. 2021 May 19;7(21). doi: 10.1126/sciadv.abg3217. Print 2021 May.


DOI:10.1126/sciadv.abg3217
PMID:34138728
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8133753/
Abstract

Leukemia stem cells (LSCs) sustain the disease and contribute to relapse in acute myeloid leukemia (AML). Therapies that ablate LSCs may increase the chance of eliminating this cancer in patients. To this end, we used a bioreducible lipidoid-encapsulated Cas9/single guide RNA (sgRNA) ribonucleoprotein [lipidoid nanoparticle (LNP)-Cas9 RNP] to target the critical gene interleukin-1 receptor accessory protein () in human LSCs. To enhance LSC targeting, we loaded LNP-Cas9 RNP and the chemokine CXCL12α onto mesenchymal stem cell membrane-coated nanofibril (MSCM-NF) scaffolds mimicking the bone marrow microenvironment. In vitro, CXCL12α release induced migration of LSCs to the scaffolds, and LNP-Cas9 RNP induced efficient gene editing. knockout reduced LSC colony-forming capacity and leukemic burden. Scaffold-based delivery increased the retention time of LNP-Cas9 in the bone marrow cavity. Overall, sustained local delivery of Cas9/IL1RAP sgRNA via CXCL12α-loaded LNP/MSCM-NF scaffolds provides an effective strategy for attenuating LSC growth to improve AML therapy.

摘要

白血病干细胞 (LSCs) 维持疾病并导致急性髓系白血病 (AML) 复发。清除 LSCs 的疗法可能会增加患者消除这种癌症的机会。为此,我们使用了一种生物还原脂质体包裹的 Cas9/单指导 RNA (sgRNA) 核糖核蛋白 [脂质体纳米颗粒 (LNP)-Cas9 RNP] 来靶向人类 LSCs 中的关键基因白细胞介素 1 受体辅助蛋白 ()。为了增强 LSC 靶向性,我们将 LNP-Cas9 RNP 和趋化因子 CXCL12α 加载到模仿骨髓微环境的间充质干细胞膜包覆的纳米纤维 (MSCM-NF) 支架上。在体外,CXCL12α 的释放诱导 LSCs 迁移到支架上,并且 LNP-Cas9 RNP 诱导了有效的基因编辑。 敲除减少了 LSC 集落形成能力和白血病负担。支架为基础的递送增加了 LNP-Cas9 在骨髓腔内的保留时间。总的来说,通过 CXCL12α 负载的 LNP/MSCM-NF 支架持续局部递送至 Cas9/IL1RAP sgRNA 提供了一种有效的策略,可减弱 LSC 的生长,从而改善 AML 治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7e/8133753/7e401f9f1b66/abg3217-F5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7e/8133753/c1c4811c99f7/abg3217-F1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7e/8133753/9cc1e4f5ea4c/abg3217-F2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7e/8133753/e32ee8eb7985/abg3217-F3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7e/8133753/de47fc853be5/abg3217-F4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7e/8133753/7e401f9f1b66/abg3217-F5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7e/8133753/c1c4811c99f7/abg3217-F1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7e/8133753/9cc1e4f5ea4c/abg3217-F2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7e/8133753/e32ee8eb7985/abg3217-F3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7e/8133753/de47fc853be5/abg3217-F4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7e/8133753/7e401f9f1b66/abg3217-F5.jpg

相似文献

[1]
Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy.

Sci Adv. 2021-5

[2]
Comparative analysis of lipid Nanoparticle-Mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo.

Eur J Pharm Biopharm. 2024-3

[3]
Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing.

Acta Biomater. 2019-4-9

[4]
LNP-mediated delivery of CRISPR RNP for wide-spread in vivo genome editing in mouse cornea.

J Control Release. 2022-10

[5]
Scaffold-Based Delivery of CRISPR/Cas9 Ribonucleoproteins for Genome Editing.

Methods Mol Biol. 2021

[6]
Direct Cytosolic Delivery of CRISPR/Cas9-Ribonucleoprotein for Efficient Gene Editing.

ACS Nano. 2017-1-31

[7]
Physicochemical and Functional Characterization of Differential CRISPR-Cas9 Ribonucleoprotein Complexes.

Anal Chem. 2022-1-18

[8]
Targeted Genome Editing Using DNA-Free RNA-Guided Cas9 Ribonucleoprotein for CHO Cell Engineering.

Methods Mol Biol. 2018

[9]
Versatile modification of the CRISPR/Cas9 ribonucleoprotein system to facilitate in vivo application.

J Control Release. 2021-9-10

[10]
Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing.

Theranostics. 2021

引用本文的文献

[1]
The Interface of Gene Editing with Regenerative Medicine.

Engineering (Beijing). 2025-3

[2]
A review of synergistic strategies in cancer therapy: resveratrol-loaded hydrogels for targeted and multimodal treatment.

Discov Oncol. 2025-7-21

[3]
Advancements in CRISPR/Cas systems for disease treatment.

Acta Pharm Sin B. 2025-6

[4]
Dynamically covalent lipid nanoparticles mediate CRISPR-Cas9 genome editing against choroidal neovascularization in mice.

Sci Adv. 2025-7-11

[5]
Advancing cancer gene therapy: the emerging role of nanoparticle delivery systems.

J Nanobiotechnology. 2025-5-20

[6]
Non-Invasive Delivery of CRISPR/Cas9 Ribonucleoproteins (Cas9 RNPs) into Cells via Nanoparticles for Membrane Transport.

Pharmaceutics. 2025-2-6

[7]
Regenerative medicine: Hydrogels and mesoporous silica nanoparticles.

Mater Today Bio. 2024-11-14

[8]
Cell membrane fusion composite lipid nanocarrier: preparation and evaluation of anti-tumor effects.

Drug Deliv Transl Res. 2024-12-5

[9]
Navigating the intricate in-vivo journey of lipid nanoparticles tailored for the targeted delivery of RNA therapeutics: a quality-by-design approach.

J Nanobiotechnology. 2024-11-14

[10]
Nanocarriers for intracellular delivery of proteins in biomedical applications: strategies and recent advances.

J Nanobiotechnology. 2024-11-10

本文引用的文献

[1]
Targeted homology-directed repair in blood stem and progenitor cells with CRISPR nanoformulations.

Nat Mater. 2019-5-27

[2]
Cellular therapy for acute myeloid Leukemia - Current status and future prospects.

Blood Rev. 2019-5-11

[3]
Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges.

Blood Rev. 2019-4-29

[4]
Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing.

Acta Biomater. 2019-4-9

[5]
Spatial control of in vivo CRISPR-Cas9 genome editing via nanomagnets.

Nat Biomed Eng. 2018-11-12

[6]
Adhesion Deregulation in Acute Myeloid Leukaemia.

Cells. 2019-1-17

[7]
CML Hematopoietic Stem Cells Expressing IL1RAP Can Be Targeted by Chimeric Antigen Receptor-Engineered T Cells.

Cancer Res. 2018-12-4

[8]
Coaxial Hydro-Nanofibrils for Self-Assembly of Cell Sheets Producing Skin Bilayers.

ACS Appl Mater Interfaces. 2018-12-5

[9]
Scaffold mediated gene knockdown for neuronal differentiation of human neural progenitor cells.

Biomater Sci. 2018-10-2

[10]
Scaffold-mediated delivery for non-viral mRNA vaccines.

Gene Ther. 2018-9-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索