Suppr超能文献

利用深度学习整合基因型和气象变量进行作物产量预测。

Crop yield prediction integrating genotype and weather variables using deep learning.

机构信息

Department of Agronomy, Iowa State University, Ames, IA, United States of America.

Department of Mechanical Engineering, Iowa State University, Ames, IA, United States of America.

出版信息

PLoS One. 2021 Jun 17;16(6):e0252402. doi: 10.1371/journal.pone.0252402. eCollection 2021.

Abstract

Accurate prediction of crop yield supported by scientific and domain-relevant insights, is useful to improve agricultural breeding, provide monitoring across diverse climatic conditions and thereby protect against climatic challenges to crop production. We used performance records from Uniform Soybean Tests (UST) in North America to build a Long Short Term Memory (LSTM)-Recurrent Neural Network based model that leveraged pedigree relatedness measures along with weekly weather parameters to dissect and predict genotype response in multiple-environments. Our proposed models outperformed other competing machine learning models such as Support Vector Regression with Radial Basis Function kernel (SVR-RBF), least absolute shrinkage and selection operator (LASSO) regression and the data-driven USDA model for yield prediction. Additionally, for providing interpretability of the important time-windows in the growing season, we developed a temporal attention mechanism for LSTM models. The outputs of such interpretable models could provide valuable insights to plant breeders.

摘要

准确预测作物产量,为农业培育提供支持,在不同气候条件下进行监测,从而应对气候对作物生产的挑战。我们利用北美统一大豆试验(UST)的表现记录,构建了一个基于长短期记忆(LSTM)-递归神经网络的模型,该模型利用系谱相关度量以及每周的天气参数来剖析和预测多种环境下的基因型反应。我们提出的模型优于其他竞争的机器学习模型,如支持向量回归的径向基函数核(SVR-RBF)、最小绝对收缩和选择算子(LASSO)回归以及基于数据的美国农业部产量预测模型。此外,为了提供生长季节中重要时间窗口的可解释性,我们为 LSTM 模型开发了一种时间注意力机制。这些可解释模型的输出可以为植物育种者提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4e2/8211294/d3d3ab81e7e8/pone.0252402.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验