Suppr超能文献

使用深度神经网络进行作物产量预测。

Crop Yield Prediction Using Deep Neural Networks.

作者信息

Khaki Saeed, Wang Lizhi

机构信息

Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA, United States.

出版信息

Front Plant Sci. 2019 May 22;10:621. doi: 10.3389/fpls.2019.00621. eCollection 2019.

Abstract

Crop yield is a highly complex trait determined by multiple factors such as genotype, environment, and their interactions. Accurate yield prediction requires fundamental understanding of the functional relationship between yield and these interactive factors, and to reveal such relationship requires both comprehensive datasets and powerful algorithms. In the 2018 Syngenta Crop Challenge, Syngenta released several large datasets that recorded the genotype and yield performances of 2,267 maize hybrids planted in 2,247 locations between 2008 and 2016 and asked participants to predict the yield performance in 2017. As one of the winning teams, we designed a deep neural network (DNN) approach that took advantage of state-of-the-art modeling and solution techniques. Our model was found to have a superior prediction accuracy, with a root-mean-square-error (RMSE) being 12% of the average yield and 50% of the standard deviation for the validation dataset using predicted weather data. With perfect weather data, the RMSE would be reduced to 11% of the average yield and 46% of the standard deviation. We also performed feature selection based on the trained DNN model, which successfully decreased the dimension of the input space without significant drop in the prediction accuracy. Our computational results suggested that this model significantly outperformed other popular methods such as Lasso, shallow neural networks (SNN), and regression tree (RT). The results also revealed that environmental factors had a greater effect on the crop yield than genotype.

摘要

作物产量是一个高度复杂的性状,由基因型、环境及其相互作用等多种因素决定。准确的产量预测需要对产量与这些相互作用因素之间的功能关系有基本的了解,而要揭示这种关系则需要全面的数据集和强大的算法。在2018年先正达作物挑战中,先正达发布了几个大型数据集,记录了2008年至2016年间在2247个地点种植的2267个玉米杂交种的基因型和产量表现,并要求参与者预测2017年的产量表现。作为获胜团队之一,我们设计了一种深度神经网络(DNN)方法,利用了最先进的建模和求解技术。我们的模型被发现具有卓越的预测准确性,对于使用预测天气数据的验证数据集,其均方根误差(RMSE)为平均产量的12%,标准差的50%。若使用完美的天气数据,RMSE将降至平均产量的11%,标准差的46%。我们还基于训练好的DNN模型进行了特征选择,成功降低了输入空间的维度,且预测准确性没有显著下降。我们的计算结果表明,该模型显著优于其他常用方法,如套索回归、浅层神经网络(SNN)和回归树(RT)。结果还表明,环境因素对作物产量的影响大于基因型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfc8/6540942/21b0606c4097/fpls-10-00621-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验