Suppr超能文献

是否合并:这是微生物动力学中的问题。

To pool or not to pool: That is the question in microbial kinetics.

机构信息

Food Quality & Design Group, Wageningen University & Research, the Netherlands.

出版信息

Int J Food Microbiol. 2021 Sep 16;354:109283. doi: 10.1016/j.ijfoodmicro.2021.109283. Epub 2021 Jun 7.

Abstract

Variation observed in heat inactivation of Salmonella strains (data from Combase) was characterized using multilevel modeling with two case studies. One study concerned repetitions at one temperature, the other concerned isothermal experiments at various temperatures. Multilevel models characterize variation at various levels and handle dependencies in the data. The Weibull model was applied using Bayesian regression. The research question was how parameters varied with experimental conditions and how data can best be analyzed: no pooling (each experiment analyzed separately), complete pooling (all data analyzed together) or partial pooling (connecting the experiments while allowing for variation between experiments). In the first case study, level 1 consisted of the measurements, level 2 of the group of repetitions. While variation in the initial number parameter was low (set by the researchers), the Weibull shape factor varied for each repetition from 0.58-1.44, and the rate parameter from 0.006-0.074 h. With partial pooling variation was much less, with complete pooling variation was strongly underestimated. In the second case study, level 1 consisted of the measurements, level 2 of the group of repetitions per temperature experiment, level 3 of the cluster of various temperature experiments. The research question was how temperature affected the Weibull parameters. Variation in initial numbers was low (set by the researchers), the rate parameter was obviously affected by temperature, the estimate of the shape parameter depended on how the data were analyzed. With partial pooling, and one-step global modeling with a Bigelow-type model for the rate parameter, shape parameter variation was minimal. Model comparison based on prediction capacity of the various models was explored. The probability distribution of calculated decimal reduction times was much narrower using multilevel global modeling compared to the usual single level two-step approach. Multilevel modeling of microbial heat inactivation appears to be a suitable and powerful method to characterize and quantify variation at various levels. It handles possible dependencies in the data, and yields unbiased parameter estimates. The answer on the question "to pool or not to pool" depends on the goal of modeling, but if the goal is prediction, then partial pooling using multilevel modeling is the answer, provided that the experimental data allow that.

摘要

使用两级建模和两个案例研究来描述 Combase 中观察到的沙门氏菌菌株热失活动力学的变化。一个研究涉及一个温度下的重复,另一个涉及不同温度下的等温实验。多级模型可以在不同水平上描述变异性,并处理数据中的相关性。采用贝叶斯回归方法应用威布尔模型。研究问题是参数如何随实验条件而变化,以及如何最好地分析数据:不合并(每个实验分别分析)、完全合并(所有数据一起分析)或部分合并(连接实验,同时允许实验之间存在差异)。在第一个案例研究中,第 1 级由测量组成,第 2 级由重复组组成。虽然初始数量参数的变异性较低(由研究人员设定),但威布尔形状因子在每个重复中从 0.58 到 1.44 不等,速率参数从 0.006 到 0.074 h 不等。在部分合并中,变异性要小得多,而在完全合并中,变异性被严重低估。在第二个案例研究中,第 1 级由测量组成,第 2 级由每个温度实验的重复组组成,第 3 级由不同温度实验的聚类组成。研究问题是温度如何影响威布尔参数。初始数量的变异性较低(由研究人员设定),速率参数显然受温度影响,形状参数的估计取决于如何分析数据。在部分合并中,使用贝叶斯回归方法和 Bigelow 型速率参数一步全局建模,形状参数的变异性最小。还探索了基于各种模型预测能力的模型比较。与常用的单级两步法相比,使用多级全局建模计算的十进制减少时间的概率分布要窄得多。微生物热失活动力学的多级建模似乎是一种合适且强大的方法,可以在不同水平上描述和量化变异性。它处理数据中可能存在的相关性,并产生无偏的参数估计。“是否合并”的答案取决于建模的目标,但如果目标是预测,那么使用多级建模进行部分合并是答案,前提是实验数据允许。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验