Suppr超能文献

用于碘-123和碘-131成像的SIMIND蒙特卡罗模拟伽马相机的验证

Validation of a SIMIND Monte Carlo modelled gamma camera for Iodine-123 and Iodine-131 imaging.

作者信息

Morphis Michaella, van Staden Johan A, du Raan Hanlie, Ljungberg Michael

机构信息

Department of Medical Physics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.

Medical Radiation Physics, Lund University, Lund, Sweden.

出版信息

Heliyon. 2021 May 31;7(6):e07196. doi: 10.1016/j.heliyon.2021.e07196. eCollection 2021 Jun.

Abstract

PURPOSE

Monte Carlo (MC) modelling techniques can assess the quantitative accuracy of both planar and SPECT Nuclear Medicine images. It is essential to validate the MC code's capabilities in modelling a specific clinical gamma camera, for radionuclides of interest, before its use as a clinical image simulator. This study aimed to determine if the SIMIND MC code accurately simulates emission images measured with a Siemens Symbia™ T16 SPECT/CT system for I-123 with a LEHR and a ME collimator and for I-131 with a HE collimator.

METHODS

The static and WB planar validation tests included extrinsic system energy pulse-height distributions (EPHDs), system sensitivity and system spatial resolution in air as well as a scatter medium. The SPECT validation test comprised the sensitivity from a simple geometry of a sphere in a cylindrical water-filled phantom.

RESULTS

The system EPHDs compared well, with differences between measured and simulated primary photopeak FWHM values not exceeding 4.6 keV. Measured and simulated planar system sensitivity values displayed percentage differences less than 6.9% and 6.3% for static and WB planar images, respectively. Measured and simulated planar system spatial resolution values in air showed percentage differences not exceeding 6.4% (FWHM) and 10.0% (FWTM), and 5.1% (FWHM) and 5.4% (FWTM) for static and WB planar images, respectively. For static planar system spatial resolution measured and simulated in a scatter medium, percentage differences of FWHM and FWTM values were less than 5.8% and 12.6%, respectively. The maximum percentage difference between the measured and simulated SPECT validation results was 3.6%.

CONCLUSION

The measured and simulated validation results compared well for all isotope-collimator combinations and showed that the SIMIND MC code could be used to accurately simulate static and WB planar and SPECT projection images of the Siemens Symbia™ T16 SPECT/CT for both I-123 and I-131 with their respective collimators.

摘要

目的

蒙特卡罗(MC)建模技术可评估平面和单光子发射计算机断层扫描(SPECT)核医学图像的定量准确性。在将MC代码用作临床图像模拟器之前,验证其对特定临床伽马相机、感兴趣的放射性核素的建模能力至关重要。本研究旨在确定SIMIND MC代码是否能准确模拟使用西门子Symbia™ T16 SPECT/CT系统,搭配低能高分辨率(LEHR)准直器和中能(ME)准直器对I-123进行测量的发射图像,以及使用高能(HE)准直器对I-131进行测量的发射图像。

方法

静态和全身平面验证测试包括外部系统能量脉冲高度分布(EPHD)、系统灵敏度以及在空气中和散射介质中的系统空间分辨率。SPECT验证测试包括在圆柱形充水体模中一个球体的简单几何形状的灵敏度。

结果

系统EPHD比较良好,测量值与模拟的主要光电峰半高宽(FWHM)值之间的差异不超过4.6 keV。对于静态和全身平面图像,测量和模拟的平面系统灵敏度值显示的百分比差异分别小于6.9%和6.3%。在空气中测量和模拟的平面系统空间分辨率值显示,对于静态和全身平面图像,百分比差异分别不超过6.4%(FWHM)和10.0%(半高全宽,FWTM),以及5.1%(FWHM)和5.4%(FWTM)。对于在散射介质中测量和模拟的静态平面系统空间分辨率,FWHM和FWTM值的最大百分比差异分别小于5.8%和12.6%。测量和模拟的SPECT验证结果之间的最大百分比差异为3.6%。

结论

对于所有同位素 - 准直器组合,测量和模拟的验证结果比较良好,表明SIMIND MC代码可用于准确模拟西门子Symbia™ T16 SPECT/CT对I - 123和I - 131使用各自准直器时的静态和全身平面以及SPECT投影图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65c2/8187242/3712e2a3d8ae/gr5.jpg

相似文献

1
Validation of a SIMIND Monte Carlo modelled gamma camera for Iodine-123 and Iodine-131 imaging.
Heliyon. 2021 May 31;7(6):e07196. doi: 10.1016/j.heliyon.2021.e07196. eCollection 2021 Jun.
2
Modelling of energy-dependent spectral resolution for SPECT Monte Carlo simulations using SIMIND.
Heliyon. 2021 Feb 10;7(2):e06097. doi: 10.1016/j.heliyon.2021.e06097. eCollection 2021 Feb.
3
Validation of a Monte Carlo modelled gamma camera for Lutetium-177 imaging.
Appl Radiat Isot. 2020 Sep;163:109200. doi: 10.1016/j.apradiso.2020.109200. Epub 2020 Apr 27.
4
Evaluation of Iodine-123 and Iodine-131 SPECT activity quantification: a Monte Carlo study.
EJNMMI Phys. 2021 Aug 19;8(1):61. doi: 10.1186/s40658-021-00407-1.
5
Validation of Tc and Lu quantification parameters for a Monte Carlo modelled gamma camera.
EJNMMI Phys. 2023 Apr 8;10(1):27. doi: 10.1186/s40658-023-00547-6.
6
SIMIND Monte Carlo simulation of a single photon emission CT.
J Med Phys. 2010 Jan;35(1):42-7. doi: 10.4103/0971-6203.55967.
7
Collimator and energy window optimization for ⁹⁰Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study.
Appl Radiat Isot. 2016 Feb;108:124-128. doi: 10.1016/j.apradiso.2015.12.041. Epub 2015 Dec 17.
8
Comparison of Image Quality of Different Radionuclides Technetium-99m, Samarium-153, and Iodine-123.
Indian J Nucl Med. 2019 Jul-Sep;34(3):201-204. doi: 10.4103/ijnm.IJNM_42_19.
10
Evaluation of Improved Imaging Properties with Tungsten-Based Parallel-Hole Collimators: A Monte Carlo Study.
World J Nucl Med. 2024 Apr 12;23(2):95-102. doi: 10.1055/s-0044-1786165. eCollection 2024 Jun.

引用本文的文献

2
Joint Regional Uptake Quantification of Thorium-227 and Radium-223 Using a Multiple-Energy-Window Projection-Domain Quantitative SPECT Method.
IEEE Trans Med Imaging. 2024 Dec;43(12):4281-4293. doi: 10.1109/TMI.2024.3420228. Epub 2024 Dec 2.
6
A Projection-Domain Low-Count Quantitative SPECT Method for -Particle-Emitting Radiopharmaceutical Therapy.
IEEE Trans Radiat Plasma Med Sci. 2023 Jan;7(1):62-74. doi: 10.1109/trpms.2022.3175435. Epub 2022 May 23.
7
Validation of Tc and Lu quantification parameters for a Monte Carlo modelled gamma camera.
EJNMMI Phys. 2023 Apr 8;10(1):27. doi: 10.1186/s40658-023-00547-6.
9
A tissue-fraction estimation-based segmentation method for quantitative dopamine transporter SPECT.
Med Phys. 2022 Aug;49(8):5121-5137. doi: 10.1002/mp.15778. Epub 2022 Jun 29.
10
Evaluation of Iodine-123 and Iodine-131 SPECT activity quantification: a Monte Carlo study.
EJNMMI Phys. 2021 Aug 19;8(1):61. doi: 10.1186/s40658-021-00407-1.

本文引用的文献

1
Modelling of energy-dependent spectral resolution for SPECT Monte Carlo simulations using SIMIND.
Heliyon. 2021 Feb 10;7(2):e06097. doi: 10.1016/j.heliyon.2021.e06097. eCollection 2021 Feb.
2
Validation of a Monte Carlo modelled gamma camera for Lutetium-177 imaging.
Appl Radiat Isot. 2020 Sep;163:109200. doi: 10.1016/j.apradiso.2020.109200. Epub 2020 Apr 27.
3
Theranostics in nuclear medicine practice.
Onco Targets Ther. 2017 Oct 3;10:4821-4828. doi: 10.2147/OTT.S140671. eCollection 2017.
4
Hybrid Imaging for Patient-Specific Dosimetry in Radionuclide Therapy.
Diagnostics (Basel). 2015 Jul 10;5(3):296-317. doi: 10.3390/diagnostics5030296.
7
MIRD pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications.
J Nucl Med. 2013 Dec;54(12):2182-8. doi: 10.2967/jnumed.113.122390. Epub 2013 Oct 15.
8
Radioiodine: the classic theranostic agent.
Semin Nucl Med. 2012 May;42(3):164-70. doi: 10.1053/j.semnuclmed.2011.12.002.
10
Reduction of collimator correction artefacts with bayesian reconstruction in spect.
Int J Mol Imaging. 2011;2011:630813. doi: 10.1155/2011/630813. Epub 2010 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验