Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, West Bengal, India.
Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden.
Biochemistry. 2021 Jul 6;60(26):2084-2097. doi: 10.1021/acs.biochem.1c00281. Epub 2021 Jun 18.
The discovery of small molecules that exhibit turn-on far-red or near-infrared (NIR) fluorescence upon DNA binding and understanding how they bind DNA are important for imaging and bioanalytical applications. Here we report the DNA-bound structure and the DNA binding mechanism of quinone cyanine dithiazole (QCy-DT), a recently reported AT-specific turn-on NIR fluorescent probe for double-stranded DNA. The nuclear magnetic resonance (NMR)-derived structure showed minor groove binding but no specific ligand-DNA interactions, consistent with an endothermic and entropy-driven binding mechanism deduced from isothermal titration calorimetry. Minor groove binding is typically fast because it minimally perturbs the DNA structure. However, QCy-DT exhibited unusually slow DNA binding. The cyanine-based probe is capable of - isomerization due to overlapping methine bridges, with 16 possible slowly interconverting / isomers. Using NMR, density functional theory, and free energy calculations, we show that the DNA-free and DNA-bound environments of QCy-DT prefer distinctly different isomers, indicating that the origin of the slow kinetics is a - isomerization and that the minor groove preferentially selects an otherwise unstable / isomer of QCy-DT. Flux analysis showed the conformational selection pathway to be the dominating DNA binding mechanism at low DNA concentrations, which switches to the induced fit pathway at high DNA concentrations. This report of / isomerization of a ligand, upon binding the DNA minor groove, expands the prevailing understanding of unique discriminatory powers of the minor groove and has an important bearing on using polymethine cyanine dyes to probe the kinetics of molecular interactions.
小分子的发现,这些小分子在与 DNA 结合时表现出开环远红或近红外(NIR)荧光,并且了解它们如何与 DNA 结合,对于成像和生物分析应用非常重要。在这里,我们报告了醌氰二噻唑(QCy-DT)的 DNA 结合结构和 DNA 结合机制,QCy-DT 是最近报道的用于双链 DNA 的 AT 特异性开环 NIR 荧光探针。核磁共振(NMR)衍生的结构显示小沟结合,但没有特定的配体-DNA 相互作用,与从等温滴定量热法推断出的吸热和熵驱动的结合机制一致。小沟结合通常很快,因为它最小化地扰乱 DNA 结构。然而,QCy-DT 表现出异常缓慢的 DNA 结合。由于重叠的亚甲基桥,基于氰的探针能够发生 - 异构化,具有 16 个可能缓慢互变的 / 异构体。使用 NMR、密度泛函理论和自由能计算,我们表明 QCy-DT 的 DNA 游离和 DNA 结合环境明显偏爱不同的异构体,表明慢动力学的起源是 - 异构化,并且小沟优先选择 QCy-DT 的另一种不稳定的 / 异构体。通量分析表明,构象选择途径是在低 DNA 浓度下主要的 DNA 结合机制,该机制在高 DNA 浓度下切换为诱导契合途径。该报告描述了配体在结合 DNA 小沟时的 / 异构化,扩展了对小沟独特区分能力的现有理解,并对使用多甲川氰染料探测分子相互作用动力学具有重要意义。