Suppr超能文献

相似文献

1
Chemoproteomic methods for covalent drug discovery.
Chem Soc Rev. 2021 Aug 2;50(15):8361-8381. doi: 10.1039/d1cs00231g.
2
Lysine-Targeted Inhibitors and Chemoproteomic Probes.
Annu Rev Biochem. 2019 Jun 20;88:365-381. doi: 10.1146/annurev-biochem-061516-044805. Epub 2019 Jan 11.
3
Reimagining Druggability Using Chemoproteomic Platforms.
Acc Chem Res. 2021 Apr 6;54(7):1801-1813. doi: 10.1021/acs.accounts.1c00065. Epub 2021 Mar 18.
4
Chemoproteomic approaches to drug target identification and drug profiling.
Bioorg Med Chem. 2012 Mar 15;20(6):1973-8. doi: 10.1016/j.bmc.2011.11.003. Epub 2011 Nov 9.
5
Stability-based approaches in chemoproteomics.
Expert Rev Mol Med. 2024 Apr 12;26:e6. doi: 10.1017/erm.2024.6.
6
A Chemoproteomic Strategy for Direct and Proteome-Wide Covalent Inhibitor Target-Site Identification.
J Am Chem Soc. 2019 Jan 9;141(1):191-203. doi: 10.1021/jacs.8b07911. Epub 2018 Dec 20.
7
Activity- and reactivity-based proteomics: Recent technological advances and applications in drug discovery.
Curr Opin Chem Biol. 2021 Feb;60:20-29. doi: 10.1016/j.cbpa.2020.06.011. Epub 2020 Aug 5.
8
Chemical proteomics: terra incognita for novel drug target profiling.
Chin J Cancer. 2012 Nov;31(11):507-18. doi: 10.5732/cjc.011.10377. Epub 2012 May 23.
9
Chemoproteomic-enabled phenotypic screening.
Cell Chem Biol. 2021 Mar 18;28(3):371-393. doi: 10.1016/j.chembiol.2021.01.012. Epub 2021 Feb 11.
10
Covalent fragment libraries in drug discovery.
Drug Discov Today. 2020 Jun;25(6):983-996. doi: 10.1016/j.drudis.2020.03.016. Epub 2020 Apr 13.

引用本文的文献

1
A New Detailed Mass Offset Search in MSFragger for Improved Interpretation of Complex PTMs.
bioRxiv. 2025 Jul 31:2025.07.28.667198. doi: 10.1101/2025.07.28.667198.
2
Evaluating Biocompatibility: From Classical Techniques to State-of-the-Art Functional Proteomics.
Nanomaterials (Basel). 2025 Jul 3;15(13):1032. doi: 10.3390/nano15131032.
3
Target Engagement Assays in Early Drug Discovery.
J Med Chem. 2025 Jun 26;68(12):12331-12368. doi: 10.1021/acs.jmedchem.4c03115. Epub 2025 Jun 4.
5
Chemoproteomic Profiling of for Characterization of Antifungal Kinase Inhibitors.
J Med Chem. 2025 Apr 10;68(7):7615-7629. doi: 10.1021/acs.jmedchem.5c00097. Epub 2025 Mar 20.
8
Chemoproteomic Profiling of for Characterization of Anti-fungal Kinase Inhibitors.
bioRxiv. 2025 Jan 10:2025.01.10.632200. doi: 10.1101/2025.01.10.632200.
9
Open-source electrophilic fragment screening platform to identify chemical starting points for UCHL1 covalent inhibitors.
SLAS Discov. 2024 Dec;29(8):100198. doi: 10.1016/j.slasd.2024.100198. Epub 2024 Nov 30.
10
Multi-tiered chemical proteomic maps of tryptoline acrylamide-protein interactions in cancer cells.
Nat Chem. 2024 Oct;16(10):1592-1604. doi: 10.1038/s41557-024-01601-1. Epub 2024 Aug 13.

本文引用的文献

1
Small-Molecule Activity-Based Probe for Monitoring Ubiquitin C-Terminal Hydrolase L1 (UCHL1) Activity in Live Cells and Zebrafish Embryos.
J Am Chem Soc. 2020 Sep 30;142(39):16825-16841. doi: 10.1021/jacs.0c07726. Epub 2020 Sep 18.
2
Cyanopyrrolidine Inhibitors of Ubiquitin Specific Protease 7 Mediate Desulfhydration of the Active-Site Cysteine.
ACS Chem Biol. 2020 Jun 19;15(6):1392-1400. doi: 10.1021/acschembio.0c00031. Epub 2020 Apr 17.
3
Identification of the Clinical Development Candidate , a Covalent KRAS Inhibitor for the Treatment of Cancer.
J Med Chem. 2020 Jul 9;63(13):6679-6693. doi: 10.1021/acs.jmedchem.9b02052. Epub 2020 Apr 6.
4
Selective USP7 inhibition elicits cancer cell killing through a p53-dependent mechanism.
Sci Rep. 2020 Mar 24;10(1):5324. doi: 10.1038/s41598-020-62076-x.
6
Global targeting of functional tyrosines using sulfur-triazole exchange chemistry.
Nat Chem Biol. 2020 Feb;16(2):150-159. doi: 10.1038/s41589-019-0404-5. Epub 2019 Nov 25.
7
Rapid Covalent-Probe Discovery by Electrophile-Fragment Screening.
J Am Chem Soc. 2019 Jun 5;141(22):8951-8968. doi: 10.1021/jacs.9b02822. Epub 2019 May 22.
8
Global Portrait of Protein Targets of Metabolites of the Neurotoxic Compound BIA 10-2474.
ACS Chem Biol. 2019 Feb 15;14(2):192-197. doi: 10.1021/acschembio.8b01097. Epub 2019 Jan 31.
9
Covalent Modifiers of Botulinum Neurotoxin Counteract Toxin Persistence.
ACS Chem Biol. 2019 Jan 18;14(1):76-87. doi: 10.1021/acschembio.8b00937. Epub 2019 Jan 8.
10
A Chemoproteomic Strategy for Direct and Proteome-Wide Covalent Inhibitor Target-Site Identification.
J Am Chem Soc. 2019 Jan 9;141(1):191-203. doi: 10.1021/jacs.8b07911. Epub 2018 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验