Suppr超能文献

纳米间隙生物传感器制造和特性分析技术的最新进展:综述。

Recent advances in techniques for fabrication and characterization of nanogap biosensors: A review.

机构信息

Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Kampus Uniciti Alam Sg. Chuchuh, Padang Besar (U), Perlis, Malaysia.

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.

出版信息

Biotechnol Appl Biochem. 2022 Aug;69(4):1395-1417. doi: 10.1002/bab.2212. Epub 2021 Aug 22.

Abstract

Nanogap biosensors have fascinated researchers due to their excellent electrical properties. Nanogap biosensors comprise three arrays of electrodes that form nanometer-size gaps. The sensing gaps have become the major building blocks of several sensing applications, including bio- and chemosensors. One of the advantages of nanogap biosensors is that they can be fabricated in nanoscale size for various downstream applications. Several studies have been conducted on nanogap biosensors, and nanogap biosensors exhibit potential material properties. The possibilities of combining these unique properties with a nanoscale-gapped device and electrical detection systems allow excellent and potential prospects in biomolecular detection. However, their fabrication is challenging as the gap is becoming smaller. It includes high-cost, low-yield, and surface phenomena to move a step closer to the routine fabrications. This review summarizes different feasible techniques in the fabrication of nanogap electrodes, such as preparation by self-assembly with both conventional and nonconventional approaches. This review also presents a comprehensive analysis of the fabrication, potential applications, history, and the current status of nanogap biosensors with a special focus on nanogap-mediated bio- and chemical sonsors.

摘要

纳米间隙生物传感器因其优异的电学性能而引起了研究人员的关注。纳米间隙生物传感器由三个电极阵列组成,这些电极阵列形成纳米级大小的间隙。传感间隙已成为包括生物和化学传感器在内的多种传感应用的主要构建块。纳米间隙生物传感器的优点之一是它们可以在纳米级尺寸上制造,用于各种下游应用。已经对纳米间隙生物传感器进行了多项研究,并且纳米间隙生物传感器表现出了潜在的材料特性。将这些独特的特性与纳米级间隙器件和电检测系统相结合的可能性,为生物分子检测提供了极好的潜在前景。然而,由于间隙变得越来越小,其制造具有挑战性。它包括高成本、低产量和表面现象,以更接近常规制造。这篇综述总结了纳米间隙电极制造的不同可行技术,例如通过自组装制备,包括传统和非传统方法。本文还对纳米间隙生物传感器的制造、潜在应用、历史和现状进行了全面分析,特别关注了纳米间隙介导的生物和化学传感器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验