Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, USA.
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.
Geobiology. 2021 Nov;19(6):601-617. doi: 10.1111/gbi.12458. Epub 2021 Jun 18.
In order to reconstruct the ecosystem structure of chemosynthetic environments in the fossil record, geochemical proxies must be developed. Here, we present a suite of novel compound-specific isotope parameters for tracing chemosynthetic production with a focus on understanding nitrogen dynamics in deep-sea cold seep environments. We examined the chemosymbiotic bivalve Bathymodiolus childressi from three geographically distinct seep sites on the NE Atlantic Margin and compared isotope data to non-chemosynthetic littoral mussels to test whether water depth, seep activity, and/or mussel bed size are linked to differences in chemosynthetic production. The bulk isotope analysis of carbon (δ C) and nitrogen (δ N), and δ N values of individual amino acids (δ N ) in both gill and muscle tissues, as well as δ N derived parameters including trophic level (TL), baseline δ N value (δ N ), and a microbial resynthesis index (ΣV), were used to investigate specific geochemical signatures of chemosynthesis. Our results show that δ N values provide a number of new proxies for relative reliance on chemosynthesis, including TL, ∑V, and both δ N values and molar percentages (Gly/Glu mol% index) of specific AA. Together, these parameters suggested that relative chemoautotrophy is linked to both degree of venting from seeps and mussel bed size. Finally, we tested a Bayesian mixing model using diagnostic AA δ N values, showing that percent contribution of chemoautotrophic versus heterotrophic production to seep mussel nutrition can be directly estimated from δ N values. Our results demonstrate that δ N analysis can provide a new set of geochemical tools to better understand mixotrophic ecosystem function and energetics, and suggest extension to the study of ancient chemosynthetic environments in the fossil record.
为了重建化石记录中化能合成环境的生态系统结构,必须开发地球化学示踪剂。在这里,我们提出了一套新的用于追踪化能合成作用的化合物特异性同位素参数,重点是了解深海冷渗环境中氮的动态。我们研究了来自东北大西洋边缘三个地理位置不同的渗口的共生双壳类贻贝 Bathymodiolus childressi,并将同位素数据与非化能合成的滨岸贻贝进行了比较,以测试水深、渗口活动和/或贻贝床大小是否与化能合成作用的差异有关。我们对贻贝鳃和肌肉组织中的碳(δ C)和氮(δ N)的总同位素分析,以及个体氨基酸(δ N)的δ N值,以及包括营养级(TL)、基线δ N值(δ N)和微生物再合成指数(ΣV)在内的δ N衍生参数,用于研究化能合成的特定地球化学特征。我们的结果表明,δ N值为相对依赖化能合成提供了许多新的示踪剂,包括 TL、∑V 以及特定 AA 的 δ N值和摩尔百分比(Gly/Glu mol%指数)。这些参数表明,相对化能自养与喷口的排气程度和贻贝床的大小有关。最后,我们使用诊断性 AA δ N值测试了贝叶斯混合模型,结果表明,可以直接从 δ N值估计出渗口贻贝营养中化能自养与异养生产的相对贡献。我们的结果表明,δ N分析可以提供一组新的地球化学工具,以更好地了解混合生态系统的功能和能量学,并为研究化石记录中的古代化能合成环境提供了延伸。