Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave NW, Washington, DC, 20560, USA.
U.S. Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville, WV, 25430, USA.
BMC Ecol Evol. 2022 Jun 17;22(1):76. doi: 10.1186/s12862-022-02027-4.
Deep-sea mussels in the subfamily Bathymodiolinae have unique adaptations to colonize hydrothermal-vent and cold-seep environments throughout the world ocean. These invertebrates function as important ecosystem engineers, creating heterogeneous habitat and promoting biodiversity in the deep sea. Despite their ecological significance, efforts to assess the diversity and connectivity of this group are extremely limited. Here, we present the first genomic-scale diversity assessments of the recently discovered bathymodioline cold-seep communities along the U.S. Atlantic margin, dominated by Gigantidas childressi and Bathymodiolus heckerae.
A Restriction-site Associated DNA Sequencing (RADSeq) approach was used on 177 bathymodiolines to examine genetic diversity and population structure within and between seep sites. Assessments of genetic differentiation using single-nucleotide polymorphism (SNP) data revealed high gene flow among sites, with the shallower and more northern sites serving as source populations for deeper occurring G. childressi. No evidence was found for genetic diversification across depth in G. childressi, likely due to their high dispersal capabilities. Kinship analyses indicated a high degree of relatedness among individuals, and at least 10-20% of local recruits within a particular site. We also discovered candidate adaptive loci in G. childressi and B. heckerae that suggest differences in developmental processes and depth-related and metabolic adaptations to chemosynthetic environments.
These results highlight putative source communities for an important ecosystem engineer in the deep sea that may be considered in future conservation efforts. Our results also provide clues into species-specific adaptations that enable survival and potential speciation within chemosynthetic ecosystems.
深海贻贝在 Bathymodiolinae 亚科中具有独特的适应能力,可以在全球海洋中的热液喷口和冷渗环境中殖民。这些无脊椎动物是重要的生态系统工程师,它们创造了异质的栖息地,并促进了深海的生物多样性。尽管它们具有重要的生态意义,但评估该群体多样性和连通性的努力极其有限。在这里,我们首次对美国大西洋边缘新发现的 Bathymodiolinae 冷渗群落进行了基因组规模的多样性评估,这些群落主要由 Gigantidas childressi 和 Bathymodiolus heckerae 主导。
我们使用限制性位点相关 DNA 测序(RADSeq)方法对 177 只 Bathymodiolinae 进行了研究,以检查内部和之间的遗传多样性和种群结构。使用单核苷酸多态性(SNP)数据评估遗传分化表明,各站点之间的基因流动很高,较浅和较北的站点是较深的 G. childressi 的源种群。在 G. childressi 中没有发现跨深度遗传多样化的证据,这可能是由于它们具有高度的扩散能力。亲缘关系分析表明个体之间具有高度的亲缘关系,并且在特定地点内至少有 10-20%的本地招募人员。我们还在 G. childressi 和 B. heckerae 中发现了候选适应性基因座,这些基因座表明了在发育过程以及与化学合成环境相关的深度适应和代谢适应方面的差异。
这些结果突出了深海中重要生态系统工程师的潜在源群落,这可能在未来的保护工作中得到考虑。我们的研究结果还提供了有关使特定物种在化学合成生态系统中生存和潜在形成新物种的特定适应性的线索。