文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用微生物电解池辅助厌氧消化(MEC-AD)蛋白质提高甲烷产量的潜在机制。

The underlying mechanism of enhanced methane production using microbial electrolysis cell assisted anaerobic digestion (MEC-AD) of proteins.

机构信息

State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.

Engineering Laboratory of Microalgal Bioenergy, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China.

出版信息

Water Res. 2021 Aug 1;201:117325. doi: 10.1016/j.watres.2021.117325. Epub 2021 Jun 4.


DOI:10.1016/j.watres.2021.117325
PMID:34144484
Abstract

Anaerobic digestion (AD) is a promising technology capable of converting waste matter into bio-energy. Recent studies have reported that microbial electrolysis cell assisted anaerobic digestion (MEC-AD) is an effective system for methane production from organic waste, via enhanced electron transfer. However, little is known about the effects of applied voltage on the AD of proteins. Herein, the mechanism of MEC-AD on protein digestion was investigated using varying concentrations of bovine serum albumin (BSA) as the protein substrate (500 mg/L, 4 g/L, and 20 g/L BSA). Experimental results showed that the applied voltage can not only enhance the methane production rate from 23.8% to 45.6% at low and medium organic loading (BSA concentration of 500 mg/L and 4 g/L), but also improve the methanogenesis efficiency increased by 225.4% at high BSA concentration (20 g/L) with the applied voltage of 0.6 V compared to that with open circuit. Mechanism explorations revealed that the applied voltage significantly enhanced the acidogenesis and methanogenesis processes in the AD of proteins. Microbial community characterization showed that with the applied voltage, the abundance of fermentative bacteria increased by 46.7 % at the anode, while, the abundance of Methanobacterium at the cathode increased from 10.4 to 84.3%, indicating the methanogenesis pathway transformed from acetoclastic to hydrogenotrophic. External circuit electron transfer calculations demonstrated that only 10% of the produced methane could be attributed to direct interspecies electron transfer (DIET). From a thermodynamic perspective, the applied external voltage led to a reduction in the cathodic potential to -0.9 V, which is beneficial for enhanced methane production via mediated interspecies electron transfer (MIET) by enrichment of hydrogenotrophic methanogens. The findings reported here reveal the previously unrecognized contribution of proteins to MEC-AD, while also furthering our understanding of the role of applied voltage in the MEC-AD process.

摘要

厌氧消化(AD)是一种有前途的技术,能够将废物转化为生物能源。最近的研究报告称,微生物电解池辅助厌氧消化(MEC-AD)是一种从有机废物中生产甲烷的有效系统,通过增强电子传递。然而,对于施加电压对蛋白质 AD 的影响知之甚少。在此,使用不同浓度的牛血清白蛋白(BSA)作为蛋白质底物(500mg/L、4g/L 和 20g/L BSA)研究了 MEC-AD 对蛋白质消化的机制。实验结果表明,施加电压不仅可以在低和中有机负荷(BSA 浓度为 500mg/L 和 4g/L)下将甲烷生成速率提高 23.8%至 45.6%,而且与开路相比,在高 BSA 浓度(20g/L)下施加 0.6V 电压还可以将产甲烷效率提高 225.4%。机制探索表明,施加电压显着增强了蛋白质 AD 中的酸化和产甲烷过程。微生物群落特征表明,施加电压后,阳极处发酵细菌的丰度增加了 46.7%,而阴极处甲烷杆菌的丰度从 10.4%增加到 84.3%,表明产甲烷途径从乙酸营养型转变为氢营养型。外加电路电子传递计算表明,只有 10%的甲烷可以归因于直接种间电子传递(DIET)。从热力学角度来看,施加外部电压导致阴极电位降低至-0.9V,有利于通过富集氢营养型产甲烷菌通过介导种间电子传递(MIET)增强甲烷生成。这里报道的发现揭示了蛋白质对 MEC-AD 的以前未被认识到的贡献,同时也进一步了解了施加电压在 MEC-AD 过程中的作用。

相似文献

[1]
The underlying mechanism of enhanced methane production using microbial electrolysis cell assisted anaerobic digestion (MEC-AD) of proteins.

Water Res. 2021-8-1

[2]
Enhancement of methane production from waste activated sludge using hybrid microbial electrolysis cells-anaerobic digestion (MEC-AD) process - A review.

Bioresour Technol. 2022-2

[3]
Enhanced degradation and methane production of food waste anaerobic digestate using an integrated system of anaerobic digestion and microbial electrolysis cells for long-term operation.

Environ Sci Pollut Res Int. 2024-6

[4]
Biogas upgrading performance and underlying mechanism in microbial electrolysis cell and anaerobic digestion integrated system.

Bioresour Technol. 2024-5

[5]
Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell.

Bioresour Technol. 2015-10-20

[6]
Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells.

Biotechnol Biofuels. 2016-8-2

[7]
Mitigation of Triclocarban Inhibition in Microbial Electrolysis Cell-Assisted Anaerobic Digestion.

Environ Sci Technol. 2024-5-28

[8]
Enhanced methane production by alleviating sulfide inhibition with a microbial electrolysis coupled anaerobic digestion reactor.

Environ Int. 2020-1-30

[9]
Enhanced methane production in microbial electrolysis cell coupled anaerobic digestion system with MXene accelerants.

Bioresour Technol. 2023-7

[10]
Boosting methane production and raw waste activated sludge treatment in a microbial electrolysis cell-anaerobic digestion (MEC-AD) system: The effect of organic loading rate.

Bioelectrochemistry. 2024-2

引用本文的文献

[1]
In-depth exploration of microbial electrolysis cell coupled with anaerobic digestion (MEC-AD) for methanogenesis in treating protein wastewater at high organic loading rates.

Energy Convers Manag. 2025-1-1

[2]
Potential Application of Room Temperature Synthesized MIL-100(Fe) in Enhancing Methane Production in Microbial Electrolysis Cells-Anaerobic Digestion Treating Protein-Rich Wastewater.

Chem Eng J. 2024-11-15

[3]
Reduced Cell Size Observed on Planktonic Cultures Grown in the International Space Station.

Microorganisms. 2024-2-16

[4]
Emerging bioelectrochemical technologies for biogas production and upgrading in cascading circular bioenergy systems.

iScience. 2021-8-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索