Liu Changqing, Cao Qi, Luo Xingguang, Yan Shenghan, Sun Qiyuan, Zheng Yuyi, Zhen Guangyin
College of Geographical Sciences, College of Carbon Neutral Future Technology, Fujian Normal University, Fuzhou 350007, China.
Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China.
Energy Convers Manag. 2025 Jan 1;323(Pt A). doi: 10.1016/j.enconman.2024.119152. Epub 2024 Nov 13.
High concentrations of protein wastewater often reduce treatment efficiency due to ammonia inhibition and acid accumulation caused by its low carbon-to-nitrogen ratio (C/N) after digestion, as well as its complex structure. This study investigates the performance of a microbial electrolysis cell (MEC) driving a protein digestion system with gradually increasing organic loading rates (OLR) of bovine serum albumin, elucidating microbial changes and methanogenic metabolic pathways on bioelectrodes under high OLR "inhibited steady-state" (ISS) conditions. The results showed that the accumulation of ammonia nitrogen (AN) from protein hydrolysis under high OLR conditions disrupted microbial growth and caused cell death on the electrode surface, hindering the electron transfer rate. Toxic AN reduced protein hydrolysis, led to propionate accumulation, inhibiting the acetoclastic methanogenesis process and favoring the hydrogenotrophic pathway. As OLR increased from 6 to 11 gCOD/L, cumulative methane production increased significantly from 450.24 mL to 738.72 mL, while average methane yield and production rate decreased by 10.51% and 50.28%, from 375.20 mL/gCOD and 75.04 mL/(gCOD·d) to 335.78 mL/gCOD and 37.31 mL/(gCOD·d), respectively. Despite these declines, the system maintained an ISS. Moderate OLR increases can achieve an ISS, boosting protein waste treatment capacity, methane production, and net energy output (NEO), with an OLR of 6 gCOD/L being optimal for maximizing NEO per unit substrate. These findings provide theoretical insights into the methanogenesis pathway of high OLR proteins in MEC-AD systems and offer an effective method for treating high OLR protein wastewater in future practical applications.
高浓度蛋白质废水由于消化后碳氮比(C/N)低导致氨抑制和酸积累,以及其结构复杂,常常会降低处理效率。本研究考察了微生物电解池(MEC)驱动的蛋白质消化系统在牛血清白蛋白有机负荷率(OLR)逐渐增加情况下的性能,阐明了在高OLR“抑制稳态”(ISS)条件下生物电极上的微生物变化和产甲烷代谢途径。结果表明,高OLR条件下蛋白质水解产生的氨氮(AN)积累破坏了微生物生长,导致电极表面细胞死亡,阻碍了电子传递速率。有毒的AN减少了蛋白质水解,导致丙酸盐积累,抑制了乙酸裂解产甲烷过程,有利于氢营养途径。随着OLR从6 gCOD/L增加到11 gCOD/L,累积甲烷产量从450.24 mL显著增加到738.72 mL,而平均甲烷产率和生产率分别从375.20 mL/gCOD和75.04 mL/(gCOD·d)下降了10.51%和50.28%,降至335.78 mL/gCOD和37.31 mL/(gCOD·d)。尽管有这些下降,系统仍维持了ISS。适度增加OLR可以实现ISS,提高蛋白质废水处理能力、甲烷产量和净能量输出(NEO),OLR为6 gCOD/L时最有利于使单位底物的NEO最大化。这些发现为MEC-AD系统中高OLR蛋白质的产甲烷途径提供了理论见解,并为未来实际应用中处理高OLR蛋白质废水提供了一种有效方法。