Suppr超能文献

揭示有机光伏电池中电子 - 空穴对的产生、迁移和离解以及电流的出现。

Revealing generation, migration, and dissociation of electron-hole pairs and current emergence in an organic photovoltaic cell.

作者信息

Xu Ziyao, Zhou Yi, Yam Chi Yung, Groß Lynn, De Sio Antonietta, Frauenheim Thomas, Lienau Christoph, Chen Guanhua

机构信息

Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.

Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518110, China.

出版信息

Sci Adv. 2021 Jun 18;7(25). doi: 10.1126/sciadv.abf7672. Print 2021 Jun.

Abstract

Using an innovative quantum mechanical method for an open quantum system, we observe in real time and space the generation, migration, and dissociation of electron-hole pairs, transport of electrons and holes, and current emergence in an organic photovoltaic cell. Ehrenfest dynamics is used to study photoexcitation of thiophene:fullerene stacks coupled with a time-dependent density functional tight-binding method. Our results display the generation of an electron-hole pair in the donor and its subsequent migration to the donor-acceptor interface. At the interface, electrons transfer from the lowest unoccupied molecular orbitals (LUMOs) of thiophenes to the second LUMOs of fullerene. Further migration of electrons and holes leads to the emergence of current. These findings support previous experimental evidence of coherent couplings between electronic and vibrational degrees of freedom and are expected to stimulate further work toward exploring the interplay between electron-hole pair (exciton) binding and vibronic coupling for charge separation and transport.

摘要

我们使用一种创新的开放量子系统量子力学方法,在实时和空间中观测有机光伏电池中电子 - 空穴对的产生、迁移和解离,电子和空穴的传输以及电流的出现。利用埃伦费斯特动力学结合含时密度泛函紧束缚方法研究噻吩:富勒烯堆叠的光激发。我们的结果显示了供体中电子 - 空穴对的产生及其随后向供体 - 受体界面的迁移。在界面处,电子从噻吩的最低未占据分子轨道(LUMO)转移到富勒烯的第二LUMO。电子和空穴的进一步迁移导致电流出现。这些发现支持了先前关于电子和振动自由度之间相干耦合的实验证据,并有望激发进一步探索电子 - 空穴对(激子)束缚与振动电子耦合之间相互作用以实现电荷分离和传输的研究工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50dc/8213226/37653576723f/abf7672-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验