Ferreira Rodrigo Cezar de Campos, Sagwal Amandeep, Doležal Jiří, Neuman Tomáš, Švec Martin
Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10/112, CZ16200, Praha 6, Czech Republic.
Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2. CZ16000, Praha 6, Czech Republic.
Nat Commun. 2025 Jul 1;16(1):6039. doi: 10.1038/s41467-025-61296-x.
Molecular radicals are efficient electroluminescent emitters due to the spin multiplicity of their electronic states. The excited states often exhibit a complex composition with multiple significant electronic configurations, which are essential for their optoelectronic properties but difficult to probe directly. Here we use light-scanning tunneling microscopy to investigate such an excited state by visualizing the response of a single radical molecule to a laser excitation. We observe characteristic atomic-scale spatial photocurrent patterns that can be tuned by applied bias voltage. We interpret these patterns as resulting from decay of an excited doublet state through sequential electron transfers with the tip and the substrate. The relative contributions of two dominating electronic configurations involved in this excited state are tuned by the applied voltage. This approach thus allows for disentangling the components of multiconfigurational excited states in single molecules.
分子自由基由于其电子态的自旋多重性而成为高效的电致发光体。激发态通常表现出复杂的组成,具有多种重要的电子构型,这些构型对其光电性质至关重要,但难以直接探测。在这里,我们使用光扫描隧道显微镜通过可视化单个自由基分子对激光激发的响应来研究这样的激发态。我们观察到可以通过施加偏置电压来调节的特征性原子尺度空间光电流图案。我们将这些图案解释为激发的双重态通过与针尖和基底的顺序电子转移而衰减的结果。参与该激发态的两个主要电子构型的相对贡献通过施加电压来调节。因此,这种方法能够解开单分子中多构型激发态的组成部分。