Suppr超能文献

阐明 Scenedesmus sp. IITRIND2 在镉胁迫下的生物修复机制。

Elucidating the bioremediation mechanism of Scenedesmus sp. IITRIND2 under cadmium stress.

机构信息

Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.

Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Transportation Systems, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.

出版信息

Chemosphere. 2021 Nov;283:131196. doi: 10.1016/j.chemosphere.2021.131196. Epub 2021 Jun 14.

Abstract

Cadmium (Cd) is a non-biodegradable pollutant that has become a global threat due to its bioaccumulation and biomagnification in higher trophic levels of the food chain. Green technologies such as phycoremediation is an emerging approach and possess edge over conventional methods to remediate Cd from the environment. The present investigation elucidates the adaptive mechanism of a freshwater microalga, Scenedesmus sp. IITRIND2 under Cd stress. The microalga showed excellent tolerance to Cd stress with IC value of 32 ppm. The microalga showed phenomenal removal efficiency (80%) when exposed to 25 ppm of Cd. Such a high uptake of Cd by the cells was accompanied with increased total lipid content (~33% of dry cell weight). Additionally, the elevated level of ROS, lipid peroxidation, glycine-betaine, and antioxidant enzymes evidenced the activation of efficient antioxidant machinery for alleviating the Cd stress. Further, analysis of the fatty acid methyl ester (FAME) presented a steady increase in saturated and polyunsaturated fatty acids with biodiesel properties complying the American and European fuel standards. The study proposes an integrated approach for bioremediation of toxic Cd using hyper-tolerant microalgal strains along with biodiesel production from the generated algal biomass.

摘要

镉(Cd)是一种不可生物降解的污染物,由于其在食物链的较高营养级中生物积累和生物放大,已成为全球性威胁。藻酸盐修复等绿色技术是一种新兴的方法,相对于传统方法具有优势,可以从环境中修复 Cd。本研究阐明了淡水微藻 Scenedesmus sp. IITRIND2 在 Cd 胁迫下的适应机制。该微藻对 Cd 胁迫具有极好的耐受性,IC 值约为 32 ppm。当暴露于 25 ppm 的 Cd 时,微藻表现出惊人的去除效率(80%)。细胞对 Cd 的这种高吸收伴随着总脂质含量的增加(干细胞重量的 33%)。此外,ROS、脂质过氧化、甘氨酸甜菜碱和抗氧化酶水平的升高表明,有效的抗氧化机制被激活,以减轻 Cd 胁迫。进一步分析脂肪酸甲酯(FAME)表明,生物柴油特性符合美国和欧洲燃料标准的饱和和多不饱和脂肪酸含量稳步增加。该研究提出了一种使用超耐受微藻菌株进行生物修复有毒 Cd 并从产生的藻类生物质中生产生物柴油的综合方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验