Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Institut für Systemische Neurowissenschaften, Zentrum für Experimentelle Medizin, Universitätklinikum Hamburg-Eppendorf (UKE), Hamburg, Deutschland.
Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.
Neuroimage. 2021 Oct 1;239:118285. doi: 10.1016/j.neuroimage.2021.118285. Epub 2021 Jun 17.
There is an increasing interest in quantitative imaging of T, T and diffusion contrast in the brain due to greater robustness against bias fields and artifacts, as well as better biophysical interpretability in terms of microstructure. However, acquisition time constraints are a challenge, particularly when multiple quantitative contrasts are desired and when extensive sampling of diffusion directions, high b-values or long diffusion times are needed for multi-compartment microstructure modeling. Although ultra-high fields of 7 T and above have desirable properties for many MR modalities, the shortening T and the high specific absorption rate (SAR) of inversion and refocusing pulses bring great challenges to quantitative T, T and diffusion imaging. Here, we present the MESMERISED sequence (Multiplexed Echo Shifted Multiband Excited and Recalled Imaging of STEAM Encoded Diffusion). MESMERISED removes the dead time in Stimulated Echo Acquisition Mode (STEAM) imaging by an echo-shifting mechanism. The echo-shift (ES) factor is independent of multiband (MB) acceleration and allows for very high multiplicative (ESxMB) acceleration factors, particularly under moderate and long mixing times. This results in super-acceleration and high time efficiency at 7 T for quantitative T and diffusion imaging, while also retaining the capacity to perform quantitative T and B mapping. We demonstrate the super-acceleration of MESMERISED for whole-brain T relaxometry with total acceleration factors up to 36 at 1.8 mm isotropic resolution, and up to 54 at 1.25 mm resolution qT imaging, corresponding to a 6x and 9x speedup, respectively, compared to MB-only accelerated acquisitions. We then demonstrate highly efficient diffusion MRI with high b-values and long diffusion times in two separate cases. First, we show that super-accelerated multi-shell diffusion acquisitions with 370 whole-brain diffusion volumes over 8 b-value shells up to b = 7000 s/mm can be generated at 2 mm isotropic in under 8 minutes, a data rate of almost a volume per second, or at 1.8 mm isotropic in under 11 minutes, achieving up to 3.4x speedup compared to MB-only. A comparison of b = 7000 s/mm MESMERISED against standard MB pulsed gradient spin echo (PGSE) diffusion imaging shows 70% higher SNR efficiency and greater effectiveness in supporting complex diffusion signal modeling. Second, we demonstrate time-efficient sampling of different diffusion times with 1.8 mm isotropic diffusion data acquired at four diffusion times up to 290 ms, which supports both Diffusion Tensor Imaging (DTI) and Diffusion Kurtosis Imaging (DKI) at each diffusion time. Finally, we demonstrate how adding quantitative T and B mapping to super-accelerated qT and diffusion imaging enables efficient quantitative multi-contrast mapping with the same MESMERISED sequence and the same readout train. MESMERISED extends possibilities to efficiently probe T, T and diffusion contrast for multi-component modeling of tissue microstructure.
由于对偏置场和伪影具有更强的鲁棒性,以及在微观结构方面具有更好的生物物理可解释性,因此人们越来越感兴趣对大脑中的 T、T 和扩散对比进行定量成像。然而,采集时间的限制是一个挑战,特别是当需要多个定量对比,并且当需要对扩散方向进行广泛采样、高 b 值或长扩散时间时,用于多隔室微观结构建模。尽管 7 T 及以上的超高场对许多磁共振模式具有理想的特性,但缩短的 T 和反转和重聚焦脉冲的高比吸收率 (SAR) 给定量 T、T 和扩散成像带来了巨大的挑战。在这里,我们提出了 MESMERISED 序列(Multiplexed Echo Shifted Multiband Excited and Recalled Imaging of STEAM Encoded Diffusion)。MESMERISED 通过回声移位机制消除了激发回波采集模式 (STEAM) 成像中的死区时间。回声移位 (ES) 因子独立于多频带 (MB) 加速,并且允许非常高的乘法 (ESxMB) 加速因子,尤其是在中等和长混合时间下。这使得在 7 T 下进行定量 T 和扩散成像具有超高加速和高效率,同时还保留了进行定量 T 和 B 映射的能力。我们展示了 MESMERISED 在全脑 T 弛豫测量中的超高加速,在 1.8mm 各向同性分辨率下,总加速因子高达 36,在 1.25mm 分辨率 qT 成像下,总加速因子高达 54,与仅 MB 加速采集相比,分别提高了 6 倍和 9 倍。然后,我们在两个单独的案例中展示了具有高 b 值和长扩散时间的高效扩散 MRI。首先,我们表明,通过 370 个全脑扩散体积的超加速多壳扩散采集,在 8 个 b 值壳中,最高可达 b=7000 s/mm,可以在 2mm 各向同性下生成,在不到 8 分钟内,数据率接近每秒一个体积,或者在 1.8mm 各向同性下生成,在不到 11 分钟内生成,与仅 MB 相比,速度提高了 3.4 倍。将 b=7000 s/mm 的 MESMERISED 与标准 MB 脉冲梯度回波 (PGSE) 扩散成像进行比较,结果表明,其具有 70%的更高 SNR 效率,并在支持复杂扩散信号建模方面具有更大的有效性。其次,我们展示了在四个扩散时间(最高可达 290ms)下以 1.8mm 各向同性采集的不同扩散时间的高效采样,这支持在每个扩散时间点进行扩散张量成像 (DTI) 和扩散峰度成像 (DKI)。最后,我们展示了如何通过将定量 T 和 B 映射添加到超高加速 qT 和扩散成像中,使用相同的 MESMERISED 序列和相同的读出序列来实现高效的定量多对比度映射。MESMERISED 扩展了对组织微观结构的多成分建模进行 T、T 和扩散对比定量探测的可能性。