Suppr超能文献

通用金属有机框架介导合成二维钴镍基层状双氢氧化物电催化剂用于高效析氧反应

Universal MOF-Mediated synthesis of 2D CoNi-based layered triple hydroxides electrocatalyst for efficient oxygen evolution reaction.

作者信息

Yu Rui, Liu Dongmei, Yuan Mengyu, Wang Yuan, Ye Changqing, Li Jie, Du Yukou

机构信息

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.

Jiangsu Key Laboratory for Environmental Functional Materials, Institute of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.

出版信息

J Colloid Interface Sci. 2021 Nov 15;602:612-618. doi: 10.1016/j.jcis.2021.06.035. Epub 2021 Jun 11.

Abstract

Developing low-budget, stable, and high-performance electrocatalyst toward oxygen evolution reaction (OER) is of pivotal significance in the fields of energy conversion and storage. Herein, a universal metal organic framework (MOF)-mediated method for the synthesis of two-dimensional (2D) layered triple hydroxides (LTHs) nanosheets with ultrathin nature has been developed. It is interesting to disclose that the CoNi-based LTHs possess better electrochemical catalytic performance, giving superior performance to commercial RuO catalysts. Remarkably, benefitting from the ultrathin nanosheet configuration, optimized electronic structure, and strong synergistic effect, the optimized CoNiFe LTHs nanosheets show excellent OER performance with an ultralow overpotential of 262 mV at a current density of 10 mA cm and a small Tafel slope of 88.1 mV dec. This work provides a promising avenue to develop low-cost and high-performance layered ternary hydroxide electrocatalysts.

摘要

开发低成本、稳定且高性能的析氧反应(OER)电催化剂在能量转换和存储领域具有至关重要的意义。在此,已开发出一种通用的金属有机框架(MOF)介导的方法,用于合成具有超薄特性的二维(2D)层状三元氢氧化物(LTHs)纳米片。有趣的是,研究发现基于钴镍的LTHs具有更好的电化学催化性能,优于商业RuO催化剂。值得注意的是,受益于超薄纳米片结构、优化的电子结构和强大的协同效应,优化后的CoNiFe LTHs纳米片在电流密度为10 mA cm时表现出优异的OER性能,过电位低至262 mV,塔菲尔斜率小至88.1 mV dec。这项工作为开发低成本、高性能的层状三元氢氧化物电催化剂提供了一条有前景的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验