Suppr超能文献

高血压糖尿病患者房颤的预测模型

Predictive model for atrial fibrillation in hypertensive diabetic patients.

作者信息

Abellana Rosa, Gonzalez-Loyola Felipe, Verdu-Rotellar Jose-Maria, Bustamante Alejandro, Palà Elena, Clua-Espuny Josep Lluis, Montaner Joan, Pedrote Alonso, Del Val-Garcia Jose Luis, Ribas Segui Domingo, Muñoz Miguel Angel

机构信息

Biostatistics, Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain.

Departament de Pediatria, d'Obstetrícia i Ginecologia i de Medicina Preventiva, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallés), Spain.

出版信息

Eur J Clin Invest. 2021 Dec;51(12):e13633. doi: 10.1111/eci.13633. Epub 2021 Jun 19.

Abstract

BACKGROUND

Several scores to identify patients at high risk of suffering atrial fibrillation have been developed. Their applicability in hypertensive diabetic patients, however, remains uncertain. Our aim is to develop and validate a diagnostic predictive model to calculate the risk of developing atrial fibrillation at five years in a hypertensive diabetic population.

METHODS

The derivation cohort consisted of patients with both hypertension and diabetes attended in any of the 52 primary healthcare centres of Barcelona; the validation cohort came from the 11 primary healthcare centres of Terres de l'Ebre (Catalonia South) from January 2013 to December 2017. Multivariable Cox regression identified clinical risk factors associated with the development of atrial fibrillation. The overall performance, discrimination and calibration of the model were carried out.

RESULTS

The derivation data set comprised 54 575 patients. The atrial fibrillation rate incidence was 15.3 per 1000 person/year. A 5-year predictive model included age, male gender, overweight, heart failure, valvular heart disease, peripheral vascular disease, chronic kidney disease, number of antihypertensive drugs, systolic and diastolic blood pressure, heart rate, thromboembolism, stroke and previous history of myocardial infarction. The discrimination of the model was good (c-index = 0.692; 95% confidence interval, 0.684-0.700), and calibration was adequate. In the validation cohort, the discrimination was lower (c-index = 0.670).

CONCLUSIONS

The model accurately predicts future atrial fibrillation in a population with both diabetes and hypertension. Early detection allows the prevention of possible complications arising from this disease.

摘要

背景

已经开发了几种用于识别房颤高危患者的评分系统。然而,它们在高血压糖尿病患者中的适用性仍不确定。我们的目的是开发并验证一种诊断预测模型,以计算高血压糖尿病患者五年内发生房颤的风险。

方法

推导队列包括在巴塞罗那52个初级医疗中心就诊的高血压和糖尿病患者;验证队列来自2013年1月至2017年12月期间位于埃布罗河畔(加泰罗尼亚南部)的11个初级医疗中心。多变量Cox回归确定了与房颤发生相关的临床风险因素。对模型的整体性能、区分度和校准进行了评估。

结果

推导数据集包括54575名患者。房颤发病率为每1000人年15.3例。一个5年预测模型包括年龄、男性、超重、心力衰竭、心脏瓣膜病、外周血管疾病、慢性肾病、抗高血压药物数量、收缩压和舒张压、心率、血栓栓塞、中风以及心肌梗死病史。该模型的区分度良好(c指数 = 0.692;95%置信区间,0.684 - 0.700),校准也足够。在验证队列中,区分度较低(c指数 = 0.670)。

结论

该模型能准确预测糖尿病和高血压患者未来发生房颤的情况。早期检测有助于预防该疾病可能引发的并发症。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验