Suppr超能文献

基于电子健康记录的心房颤动预测模型的建立与验证。

Development and Validation of a Prediction Model for Atrial Fibrillation Using Electronic Health Records.

机构信息

Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts.

Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts.

出版信息

JACC Clin Electrophysiol. 2019 Nov;5(11):1331-1341. doi: 10.1016/j.jacep.2019.07.016. Epub 2019 Oct 2.

Abstract

OBJECTIVES

This study sought to determine whether the risk of atrial fibrillation AF can be estimated accurately by using routinely ascertained features in the electronic health record (EHR) and whether AF risk is associated with stroke.

BACKGROUND

Early diagnosis of AF and treatment with anticoagulation may prevent strokes.

METHODS

Using a multi-institutional EHR, this study identified 412,085 individuals 45 to 95 years of age without prevalent AF between 2000 and 2014. A prediction model was derived and validated for 5-year AF risk by using split-sample validation and model performance was compared with other methods of AF risk assessment.

RESULTS

Within 5 years, 14,334 individuals developed AF. In the derivation sample (7,216 AF events of 206,042 total), the optimal risk model included sex, age, race, smoking, height, weight, diastolic blood pressure, hypertension, hyperlipidemia, heart failure, coronary heart disease, valvular disease, prior stroke, peripheral arterial disease, chronic kidney disease, hypothyroidism, and quadratic terms for height, weight, and age. In the validation sample (7,118 AF events of 206,043 total) the AF risk model demonstrated good discrimination (C-statistic: 0.777; 95% confidence interval [CI:] 0.771 to 0.783) and calibration (0.99; 95% CI: 0.96 to 1.01). Model discrimination and calibration were superior to CHARGE-AF (Cohorts for Heart and Aging Research in Genomic Epidemiology AF) (C-statistic: 0.753; 95% CI: 0.747 to 0.759; calibration slope: 0.72; 95% CI: 0.71 to 0.74), CHEST (Coronary artery disease / chronic obstructive pulmonary disease; Hypertension; Elderly [age ≥75 years]; Systolic heart failure; Thyroid disease [hyperthyroidism]) (C-statistic: 0.754; 95% CI: 0.747 to 0.762; calibration slope: 0.44; 95% CI: 0.43 to 0.45), and CHADS-VASc (Congestive heart failure, Hypertension, Age ≥75 years, Diabetes mellitus, Prior stroke, transient ischemic attack [TIA], or thromboembolism, Vascular disease, Age 65-74 years, Sex category [female]) scores (C-statistic: 0.702; 95% CI: 0.693 to 0.710; calibration slope: 0.37; 95% CI: 0.36 to 0.38). AF risk discriminated incident stroke (n = 4,814; C-statistic: 0.684; 95% CI: 0.677 to 0.692) and stroke within 90 days of incident AF (n = 327; C-statistic: 0.789; 95% CI: 0.764 to 0.814).

CONCLUSIONS

A model developed from a real-world EHR database predicted AF accurately and stratified stroke risk. Incorporating AF prediction into EHRs may enable risk-guided screening for AF.

摘要

目的

本研究旨在确定是否可以通过电子健康记录(EHR)中常规确定的特征准确估计房颤(AF)的风险,以及 AF 风险是否与中风有关。

背景

早期诊断 AF 并进行抗凝治疗可能预防中风。

方法

使用多机构 EHR,本研究在 2000 年至 2014 年期间确定了 412,085 名年龄在 45 至 95 岁之间无明显 AF 的个体。通过分样验证得出了 5 年 AF 风险的预测模型,并与其他 AF 风险评估方法进行了比较。

结果

在 5 年内,有 14,334 人发生了 AF。在推导样本(206,042 例中的 7,216 例 AF 事件)中,最佳风险模型包括性别、年龄、种族、吸烟、身高、体重、舒张压、高血压、高脂血症、心力衰竭、冠心病、瓣膜病、既往中风、外周动脉疾病、慢性肾病、甲状腺功能减退症和身高、体重和年龄的二次项。在验证样本(206,043 例中的 7,118 例 AF 事件)中,AF 风险模型表现出良好的区分能力(C 统计量:0.777;95%置信区间 [CI]:0.771 至 0.783)和校准(0.99;95% CI:0.96 至 1.01)。模型的区分能力和校准能力优于 CHARGE-AF(基因组流行病学 AF 中心和年龄研究的队列)(C 统计量:0.753;95% CI:0.747 至 0.759;校准斜率:0.72;95% CI:0.71 至 0.74)、CHEST(冠状动脉疾病/慢性阻塞性肺疾病;高血压;年龄≥75 岁;收缩性心力衰竭;甲状腺疾病[甲状腺功能亢进症])(C 统计量:0.754;95% CI:0.747 至 0.762;校准斜率:0.44;95% CI:0.43 至 0.45)和 CHADS-VASc(充血性心力衰竭、高血压、年龄≥75 岁、糖尿病、既往中风、短暂性脑缺血发作 [TIA]或血栓栓塞、血管疾病、年龄 65-74 岁、性别类别[女性])评分(C 统计量:0.702;95% CI:0.693 至 0.710;校准斜率:0.37;95% CI:0.36 至 0.38)。AF 风险区分了新发中风(n=4,814;C 统计量:0.684;95% CI:0.677 至 0.692)和新发 AF 后 90 天内的中风(n=327;C 统计量:0.789;95% CI:0.764 至 0.814)。

结论

从真实世界的 EHR 数据库中开发的模型准确预测了 AF,并对中风风险进行了分层。将 AF 预测纳入 EHR 可能使 AF 的风险指导筛查成为可能。

相似文献

2
Performance of Atrial Fibrillation Risk Prediction Models in Over 4 Million Individuals.超过 400 万人的房颤风险预测模型表现。
Circ Arrhythm Electrophysiol. 2021 Jan;14(1):e008997. doi: 10.1161/CIRCEP.120.008997. Epub 2020 Dec 9.
10
Predictive model for atrial fibrillation in hypertensive diabetic patients.高血压糖尿病患者房颤的预测模型
Eur J Clin Invest. 2021 Dec;51(12):e13633. doi: 10.1111/eci.13633. Epub 2021 Jun 19.

引用本文的文献

10
A predictive score for atrial fibrillation in poststroke patients.预测脑卒中后患者心房颤动的评分。
Arq Neuropsiquiatr. 2024 Oct;82(10):1-8. doi: 10.1055/s-0044-1788271. Epub 2024 Aug 15.

本文引用的文献

7
First Diagnosis of Atrial Fibrillation at the Time of Stroke.卒中时首次诊断为心房颤动
Cerebrovasc Dis. 2017;43(3-4):192-199. doi: 10.1159/000457809. Epub 2017 Feb 17.
9
Stroke as the First Manifestation of Atrial Fibrillation.中风作为心房颤动的首发表现
PLoS One. 2016 Dec 9;11(12):e0168010. doi: 10.1371/journal.pone.0168010. eCollection 2016.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验