Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts.
Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts.
JACC Clin Electrophysiol. 2019 Nov;5(11):1331-1341. doi: 10.1016/j.jacep.2019.07.016. Epub 2019 Oct 2.
This study sought to determine whether the risk of atrial fibrillation AF can be estimated accurately by using routinely ascertained features in the electronic health record (EHR) and whether AF risk is associated with stroke.
Early diagnosis of AF and treatment with anticoagulation may prevent strokes.
Using a multi-institutional EHR, this study identified 412,085 individuals 45 to 95 years of age without prevalent AF between 2000 and 2014. A prediction model was derived and validated for 5-year AF risk by using split-sample validation and model performance was compared with other methods of AF risk assessment.
Within 5 years, 14,334 individuals developed AF. In the derivation sample (7,216 AF events of 206,042 total), the optimal risk model included sex, age, race, smoking, height, weight, diastolic blood pressure, hypertension, hyperlipidemia, heart failure, coronary heart disease, valvular disease, prior stroke, peripheral arterial disease, chronic kidney disease, hypothyroidism, and quadratic terms for height, weight, and age. In the validation sample (7,118 AF events of 206,043 total) the AF risk model demonstrated good discrimination (C-statistic: 0.777; 95% confidence interval [CI:] 0.771 to 0.783) and calibration (0.99; 95% CI: 0.96 to 1.01). Model discrimination and calibration were superior to CHARGE-AF (Cohorts for Heart and Aging Research in Genomic Epidemiology AF) (C-statistic: 0.753; 95% CI: 0.747 to 0.759; calibration slope: 0.72; 95% CI: 0.71 to 0.74), CHEST (Coronary artery disease / chronic obstructive pulmonary disease; Hypertension; Elderly [age ≥75 years]; Systolic heart failure; Thyroid disease [hyperthyroidism]) (C-statistic: 0.754; 95% CI: 0.747 to 0.762; calibration slope: 0.44; 95% CI: 0.43 to 0.45), and CHADS-VASc (Congestive heart failure, Hypertension, Age ≥75 years, Diabetes mellitus, Prior stroke, transient ischemic attack [TIA], or thromboembolism, Vascular disease, Age 65-74 years, Sex category [female]) scores (C-statistic: 0.702; 95% CI: 0.693 to 0.710; calibration slope: 0.37; 95% CI: 0.36 to 0.38). AF risk discriminated incident stroke (n = 4,814; C-statistic: 0.684; 95% CI: 0.677 to 0.692) and stroke within 90 days of incident AF (n = 327; C-statistic: 0.789; 95% CI: 0.764 to 0.814).
A model developed from a real-world EHR database predicted AF accurately and stratified stroke risk. Incorporating AF prediction into EHRs may enable risk-guided screening for AF.
本研究旨在确定是否可以通过电子健康记录(EHR)中常规确定的特征准确估计房颤(AF)的风险,以及 AF 风险是否与中风有关。
早期诊断 AF 并进行抗凝治疗可能预防中风。
使用多机构 EHR,本研究在 2000 年至 2014 年期间确定了 412,085 名年龄在 45 至 95 岁之间无明显 AF 的个体。通过分样验证得出了 5 年 AF 风险的预测模型,并与其他 AF 风险评估方法进行了比较。
在 5 年内,有 14,334 人发生了 AF。在推导样本(206,042 例中的 7,216 例 AF 事件)中,最佳风险模型包括性别、年龄、种族、吸烟、身高、体重、舒张压、高血压、高脂血症、心力衰竭、冠心病、瓣膜病、既往中风、外周动脉疾病、慢性肾病、甲状腺功能减退症和身高、体重和年龄的二次项。在验证样本(206,043 例中的 7,118 例 AF 事件)中,AF 风险模型表现出良好的区分能力(C 统计量:0.777;95%置信区间 [CI]:0.771 至 0.783)和校准(0.99;95% CI:0.96 至 1.01)。模型的区分能力和校准能力优于 CHARGE-AF(基因组流行病学 AF 中心和年龄研究的队列)(C 统计量:0.753;95% CI:0.747 至 0.759;校准斜率:0.72;95% CI:0.71 至 0.74)、CHEST(冠状动脉疾病/慢性阻塞性肺疾病;高血压;年龄≥75 岁;收缩性心力衰竭;甲状腺疾病[甲状腺功能亢进症])(C 统计量:0.754;95% CI:0.747 至 0.762;校准斜率:0.44;95% CI:0.43 至 0.45)和 CHADS-VASc(充血性心力衰竭、高血压、年龄≥75 岁、糖尿病、既往中风、短暂性脑缺血发作 [TIA]或血栓栓塞、血管疾病、年龄 65-74 岁、性别类别[女性])评分(C 统计量:0.702;95% CI:0.693 至 0.710;校准斜率:0.37;95% CI:0.36 至 0.38)。AF 风险区分了新发中风(n=4,814;C 统计量:0.684;95% CI:0.677 至 0.692)和新发 AF 后 90 天内的中风(n=327;C 统计量:0.789;95% CI:0.764 至 0.814)。
从真实世界的 EHR 数据库中开发的模型准确预测了 AF,并对中风风险进行了分层。将 AF 预测纳入 EHR 可能使 AF 的风险指导筛查成为可能。