Suppr超能文献

相似文献

1
Comprehensive Insights Into O Changes During the COVID-19 From O Formation Regime and Atmospheric Oxidation Capacity.
Geophys Res Lett. 2021 May 28;48(10):e2021GL093668. doi: 10.1029/2021GL093668. Epub 2021 May 18.
2
Enhanced atmospheric oxidation capacity and associated ozone increases during COVID-19 lockdown in the Yangtze River Delta.
Sci Total Environ. 2021 May 10;768:144796. doi: 10.1016/j.scitotenv.2020.144796. Epub 2021 Jan 7.
4
Identification of close relationship between atmospheric oxidation and ozone formation regimes in a photochemically active region.
J Environ Sci (China). 2021 Apr;102:373-383. doi: 10.1016/j.jes.2020.09.038. Epub 2020 Oct 21.
5
Overview on the spatial-temporal characteristics of the ozone formation regime in China.
Environ Sci Process Impacts. 2019 Jun 19;21(6):916-929. doi: 10.1039/c9em00098d.
8
Attribution of Tropospheric Ozone to NO and VOC Emissions: Considering Ozone Formation in the Transition Regime.
Environ Sci Technol. 2019 Feb 5;53(3):1404-1412. doi: 10.1021/acs.est.8b05981. Epub 2019 Jan 8.
9
Effects of VOC emissions from chemical industrial parks on regional O-PM compound pollution in the Yangtze River Delta.
Sci Total Environ. 2024 Jan 1;906:167503. doi: 10.1016/j.scitotenv.2023.167503. Epub 2023 Oct 1.
10
Ozone control strategies for local formation- and regional transport-dominant scenarios in a manufacturing city in southern China.
Sci Total Environ. 2022 Mar 20;813:151883. doi: 10.1016/j.scitotenv.2021.151883. Epub 2021 Nov 23.

引用本文的文献

2
Analysis of Factors Influencing Air Quality in Different Periods during COVID-19: A Case Study of Tangshan, China.
Int J Environ Res Public Health. 2023 Feb 26;20(5):4199. doi: 10.3390/ijerph20054199.
3
Is atmospheric oxidation capacity better in indicating tropospheric O formation?
Front Environ Sci Eng. 2022;16(5):65. doi: 10.1007/s11783-022-1544-5. Epub 2022 May 20.
4
Unexpected rise of atmospheric secondary aerosols from biomass burning during the COVID-19 lockdown period in Hangzhou, China.
Atmos Environ (1994). 2022 Jun 1;278:119076. doi: 10.1016/j.atmosenv.2022.119076. Epub 2022 Mar 28.
5
Temporal characteristics and spatial heterogeneity of air quality changes due to the COVID-19 lockdown in China.
Resour Conserv Recycl. 2022 Jun;181:106223. doi: 10.1016/j.resconrec.2022.106223. Epub 2022 Feb 9.

本文引用的文献

1
Substantial Changes in Nitrate Oxide and Ozone after Excluding Meteorological Impacts during the COVID-19 Outbreak in Mainland China.
Environ Sci Technol Lett. 2020 May 18;7(6):402-408. doi: 10.1021/acs.estlett.0c00304. eCollection 2020 Jun 9.
2
Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China.
Natl Sci Rev. 2020 Jun 18;8(2):nwaa137. doi: 10.1093/nsr/nwaa137. eCollection 2021 Feb.
4
Identification of close relationship between atmospheric oxidation and ozone formation regimes in a photochemically active region.
J Environ Sci (China). 2021 Apr;102:373-383. doi: 10.1016/j.jes.2020.09.038. Epub 2020 Oct 21.
5
Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19.
Sci Adv. 2020 Jul 10;6(28):eabc2992. doi: 10.1126/sciadv.abc2992. eCollection 2020 Jul.
6
Economic, social and political issues raised by the COVID-19 pandemic.
Econ Anal Policy. 2020 Dec;68:17-28. doi: 10.1016/j.eap.2020.08.002. Epub 2020 Aug 20.
7
Response of major air pollutants to COVID-19 lockdowns in China.
Sci Total Environ. 2020 Nov 15;743:140879. doi: 10.1016/j.scitotenv.2020.140879. Epub 2020 Jul 11.
9
COVID-19 lockdowns cause global air pollution declines.
Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):18984-18990. doi: 10.1073/pnas.2006853117. Epub 2020 Jul 28.
10
Increasing wintertime ozone levels and secondary aerosol formation in the Guanzhong basin, central China.
Sci Total Environ. 2020 Nov 25;745:140961. doi: 10.1016/j.scitotenv.2020.140961. Epub 2020 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验