Suppr超能文献

一种通过增强CO吸附和电子转移来获得源自BiOX纳米片的Bi纳米片作为高效CO还原催化剂的通用策略。

A general strategy for obtaining BiOX nanoplates derived Bi nanosheets as efficient CO reduction catalysts by enhancing CO adsorption and electron transfer.

作者信息

Liu Peng, Liu Huiling, Zhang Shun, Wang Jie, Wang Cheng

机构信息

Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

出版信息

J Colloid Interface Sci. 2021 Nov 15;602:740-747. doi: 10.1016/j.jcis.2021.06.010. Epub 2021 Jun 4.

Abstract

Electroreduction of carbon dioxide (CO) into formic acid/formate has been considered as one of the most promising strategies for obtaining value-added fuels and chemical productions. Herein, we present a general method for preparing Bi-based electrocatalysts via in situ reduction of bismuth oxyiodide (BiOI) in CO-saturated electrolyte. The precursors of BiOI nanoplates (P-nanoplates) with thickness of 30-40 nm could be easily obtained and provide a concise model to probe the mechanisms of CO reduction to formate. BiOI nanoplates precursors derived Bi nanosheets (P-nanoplates-Bi) exhibited an excellent performance for CO reduction to formate, achieving Faradaic efficiencies (FEs) over 80% in a wide potential window and a maximum FE approaching of 95% with a current density of 13.3 ± 0.6 mA cm at -0.9 V versus reverse hydrogen electrode (υs. RHE). Such P-nanoplates-Bi nanosheets showed a stable electrocatalytic actitivity during 15 h operation in 0.5 M KHCO aqueous solution. The superior performance is mainly attributed to the two-dimensional (2D) Bi nanosheets, which can increase CO adsorption, enlarge active surface area, show better reaction kinetics and provide lower contact resistance with accelerated electron transfer. For comparison, precursors of BiOI plate-like (P-bulk) with doubled thicknesses and ultrathin BiOI with a few nanometers derived Bi catalysts tend to agglomerate and appear as irregular structured Bi nanoparticles during the reaction. Their peak FEs for formate are much lower than those of P-nanoplates derived Bi nanosheets at -0.9 V.

摘要

将二氧化碳(CO₂)电还原为甲酸/甲酸盐被认为是获取增值燃料和化学品生产的最具前景的策略之一。在此,我们展示了一种通过在CO₂饱和电解液中原位还原碘氧化铋(BiOI)来制备铋基电催化剂的通用方法。厚度为30 - 40纳米的BiOI纳米片前驱体(P-纳米片)能够轻松获得,并为探究CO₂还原为甲酸盐的机理提供了一个简洁的模型。由BiOI纳米片前驱体衍生的Bi纳米片(P-纳米片-Bi)在将CO₂还原为甲酸盐方面表现出优异的性能,在较宽的电位窗口内法拉第效率(FEs)超过80%,在相对于可逆氢电极(vs. RHE)为 - 0.9 V时,最大FE接近95%,电流密度为13.3 ± 0.6 mA cm⁻²。这种P-纳米片-Bi纳米片在0.5 M KHCO₃水溶液中15小时的运行过程中表现出稳定的电催化活性。其优异性能主要归因于二维(2D)Bi纳米片,它可以增加CO₂吸附、扩大活性表面积、展现出更好的反应动力学并通过加速电子转移提供更低的接触电阻。相比之下,厚度加倍的BiOI板状前驱体(P-块状)以及几纳米厚的超薄BiOI衍生的Bi催化剂在反应过程中容易团聚,呈现出不规则结构的Bi纳米颗粒。在 - 0.9 V时,它们生成甲酸盐的峰值FEs远低于由P-纳米片衍生的Bi纳米片。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验