Suppr超能文献

原位铋纳米片组装用于将电催化一氧化碳高度选择性还原为甲酸盐

In Situ Bismuth Nanosheet Assembly for Highly Selective Electrocatalytic CO Reduction to Formate.

作者信息

Peng Chan-Juan, Wu Xin-Tao, Zeng Guang, Zhu Qi-Long

机构信息

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.

University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

出版信息

Chem Asian J. 2021 Jun 14;16(12):1539-1544. doi: 10.1002/asia.202100305. Epub 2021 May 10.

Abstract

The reduction of carbon dioxide (CO ) into value-added fuels using an electrochemical method has been regarded as a compelling sustainable energy conversion technology. However, high-performance electrocatalysts for CO reduction reaction (CO RR) with high formate selectivity and good stability need to be improved. Earth-abundant Bi has been demonstrated to be active for CO RR to formate. Herein, we fabricated an extremely active and selective bismuth nanosheet (Bi-NSs) assembly via an in situ electrochemical transformation of (BiO) CO nanostructures. The as-prepared material exhibits high activity and selectivity for CO RR to formate, with nearly 94% faradaic efficiency at -1.03 V (versus reversible hydrogen electrode (vs. RHE)) and stable selectivity (>90%) in a large potential window ranging from -0.83 to -1.18 V (vs. RHE) and excellent durability during 12 h continuous electrolysis. In addition, the Bi-NSs based CO RR/methanol oxidation reaction (CO RR/MOR) electrolytic system for overall CO splitting was constructed, evidencing the feasibility of its practical implementation.

摘要

利用电化学方法将二氧化碳(CO₂)还原为增值燃料被认为是一种引人注目的可持续能源转换技术。然而,用于二氧化碳还原反应(CO₂RR)的具有高甲酸盐选择性和良好稳定性的高性能电催化剂仍有待改进。储量丰富的铋已被证明对CO₂RR生成甲酸盐具有活性。在此,我们通过(BiO)₂CO₃纳米结构的原位电化学转变制备了一种极具活性和选择性的铋纳米片(Bi-NSs)组装体。所制备的材料对CO₂RR生成甲酸盐表现出高活性和选择性,在-1.03 V(相对于可逆氢电极(vs. RHE))时法拉第效率接近94%,在-0.83至-1.18 V(vs. RHE)的大电位窗口内具有稳定的选择性(>90%),并且在12小时连续电解过程中具有出色的耐久性。此外,构建了基于Bi-NSs的用于整体CO₂分解的CO₂RR/甲醇氧化反应(CO₂RR/MOR)电解系统,证明了其实际应用的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验