Suppr超能文献

安装在共振隧穿二极管上的超颖透镜用于准直和定向太赫兹波。

Metalens mounted on a resonant tunneling diode for collimated and directed terahertz waves.

作者信息

Suzuki Takehito, Endo Kota, Kim Jaeyoung, Tsuruda Kazuisao, Sekiya Masashi

出版信息

Opt Express. 2021 Jun 7;29(12):18988-19000. doi: 10.1364/OE.427135.

Abstract

Refraction in materials is a fundamental phenomenon in optics and is a factor in the manipulation of light, such as wavefront shaping and beam control. However, conventional optical lenses incorporated in numerous optical sources are made of naturally occurring materials, and material properties predetermine the lens performance. For the development of terahertz flat optics, we experimentally demonstrate a gradient-refractive-index (GRIN) collimating metalens made of our original reflectionless metasurface with an extremely high refractive index, above 10 at 0.312 THz. The planar collimating metalens converts wide-angle radiation from a resonant tunneling diode (RTD) to a collimated plane wave and enhances the directivity of a single RTD 4.2 times. We also demonstrate directional angle control of terahertz waves by moving the metalens in parallel with the incoming wave. The metalens can be simply integrated with a variety of terahertz continuous-wave (CW) sources for 6G (beyond 5G) wireless communications and imaging in future advanced applications. Flat optics based on high refractive index metasurfaces rather than naturally occurring materials can offer an accessible platform for optical devices with unprecedented functionalities.

摘要

材料中的折射是光学中的一种基本现象,并且是光操纵(如波前整形和光束控制)中的一个因素。然而,众多光源中所采用的传统光学透镜是由天然存在的材料制成的,材料特性预先决定了透镜的性能。为了太赫兹平面光学的发展,我们通过实验展示了一种梯度折射率(GRIN)准直超透镜,它由我们原创的具有极高折射率的无反射超表面制成,在0.312太赫兹频率下折射率高于10。这种平面准直超透镜将来自共振隧穿二极管(RTD)的广角辐射转换为准直平面波,并将单个RTD的方向性提高了4.2倍。我们还通过将超透镜与入射波平行移动来演示太赫兹波的方向角控制。这种超透镜可以简单地与各种太赫兹连续波(CW)源集成,用于未来先进应用中的6G(超越5G)无线通信和成像。基于高折射率超表面而非天然存在材料的平面光学可以为具有前所未有的功能的光学器件提供一个可实现的平台。

相似文献

4
All-dielectric metalens for terahertz wave imaging.用于太赫兹波成像的全介质超表面透镜
Opt Express. 2018 May 28;26(11):14132-14142. doi: 10.1364/OE.26.014132.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验