Arısoy Onat, Müstecaplıoğlu Özgür E
Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA.
Department of Physics, Koç University, 34450, Sarıyer, Istanbul, Turkey.
Sci Rep. 2021 Jun 21;11(1):12981. doi: 10.1038/s41598-021-92258-0.
We propose to use a few-qubit system as a compact quantum refrigerator for cooling an interacting multi-qubit system. We specifically consider a central qubit coupled to N ancilla qubits in a so-called spin-star model to be used as refrigerant by means of short interactions with a many-qubit system to be cooled. We first show that if the interaction between the qubits is of the longitudinal and ferromagnetic Ising model form, the central qubit is colder than the environment. We summarize how preparing the refrigerant qubits using the spin-star model paves the way for the cooling of a many-qubit system by means of a collisional route to thermalization. We discuss a simple refrigeration cycle, considering the operation cost and cooling efficiency, which can be controlled by N and the qubit-qubit interaction strength. Besides, bounds on the achievable temperature are established. Such few-qubit compact quantum refrigerators can be significant to reduce dimensions of quantum technology applications, can be easy to integrate into all-qubit systems, and can increase the speed and power of quantum computing and thermal devices.
我们提议使用一个少量子比特系统作为紧凑型量子制冷机,用于冷却一个相互作用的多量子比特系统。我们特别考虑在所谓的自旋星模型中,一个中心量子比特与N个辅助量子比特耦合,通过与待冷却的多量子比特系统进行短程相互作用,将其用作制冷剂。我们首先表明,如果量子比特之间的相互作用是纵向和铁磁伊辛模型形式,那么中心量子比特比环境温度更低。我们总结了如何使用自旋星模型制备制冷剂量子比特,为通过碰撞热化途径冷却多量子比特系统铺平道路。我们讨论了一个简单的制冷循环,考虑了运行成本和冷却效率,其可由N和量子比特 - 量子比特相互作用强度控制。此外,还确定了可达到温度的界限。这种少量子比特紧凑型量子制冷机对于减小量子技术应用的尺寸具有重要意义,易于集成到全量子比特系统中,并且可以提高量子计算和热设备的速度及功率。