Brunner Nicolas, Huber Marcus, Linden Noah, Popescu Sandu, Silva Ralph, Skrzypczyk Paul
Département de Physique Théorique, Université de Genève, 1211 Genève, Switzerland and H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom.
Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom and ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain and Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032115. doi: 10.1103/PhysRevE.89.032115. Epub 2014 Mar 13.
Small self-contained quantum thermal machines function without external source of work or control but using only incoherent interactions with thermal baths. Here we investigate the role of entanglement in a small self-contained quantum refrigerator. We first show that entanglement is detrimental as far as efficiency is concerned-fridges operating at efficiencies close to the Carnot limit do not feature any entanglement. Moving away from the Carnot regime, we show that entanglement can enhance cooling and energy transport. Hence, a truly quantum refrigerator can outperform a classical one. Furthermore, the amount of entanglement alone quantifies the enhancement in cooling.
小型独立量子热机无需外部功源或控制即可运行,仅通过与热库的非相干相互作用来工作。在此,我们研究纠缠在小型独立量子制冷机中的作用。我们首先表明,就效率而言,纠缠是有害的——在接近卡诺极限效率下运行的制冷机不存在任何纠缠。远离卡诺区时,我们表明纠缠可增强冷却和能量传输。因此,一台真正的量子制冷机可以超越经典制冷机。此外,仅纠缠量就可量化冷却增强效果。