Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia.
Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, Virginia.
Am J Physiol Lung Cell Mol Physiol. 2021 Aug 1;321(2):L477-L484. doi: 10.1152/ajplung.00223.2021. Epub 2021 Jun 22.
Acute lung injury (ALI) leading to acute respiratory distress syndrome is the major cause of COVID-19 lethality. Cell entry of SARS-CoV-2 occurs via the interaction between its surface spike protein (SP) and angiotensin-converting enzyme-2 (ACE2). It is unknown if the viral spike protein alone is capable of altering lung vascular permeability in the lungs or producing lung injury in vivo. To that end, we intratracheally instilled the S1 subunit of SARS-CoV-2 spike protein (S1SP) in K18-hACE2 transgenic mice that overexpress human ACE2 and examined signs of COVID-19-associated lung injury 72 h later. Controls included K18-hACE2 mice that received saline or the intact SP and wild-type (WT) mice that received S1SP. K18-hACE2 mice instilled with S1SP exhibited a decline in body weight, dramatically increased white blood cells and protein concentrations in bronchoalveolar lavage fluid (BALF), upregulation of multiple inflammatory cytokines in BALF and serum, histological evidence of lung injury, and activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways in the lung. K18-hACE2 mice that received either saline or SP exhibited little or no evidence of lung injury. WT mice that received S1SP exhibited a milder form of COVID-19 symptoms, compared with the K18-hACE2 mice. Furthermore, S1SP, but not SP, decreased cultured human pulmonary microvascular transendothelial resistance (TER) and barrier function. This is the first demonstration of a COVID-19-like response by an essential virus-encoded protein by SARS-CoV-2 in vivo. This model of COVID-19-induced ALI may assist in the investigation of new therapeutic approaches for the management of COVID-19 and other coronaviruses.
急性肺损伤(ALI)导致急性呼吸窘迫综合征是 COVID-19 致死的主要原因。SARS-CoV-2 通过其表面刺突蛋白(SP)与血管紧张素转换酶-2(ACE2)之间的相互作用进入细胞。目前尚不清楚病毒刺突蛋白本身是否能够改变肺部血管通透性或在体内产生肺损伤。为此,我们将 SARS-CoV-2 刺突蛋白的 S1 亚单位(S1SP)经气管内滴注到过表达人 ACE2 的 K18-hACE2 转基因小鼠中,并在 72 小时后检查与 COVID-19 相关的肺损伤迹象。对照组包括接受生理盐水或完整 SP 的 K18-hACE2 小鼠和接受 S1SP 的野生型(WT)小鼠。接受 S1SP 滴注的 K18-hACE2 小鼠表现出体重下降、支气管肺泡灌洗液(BALF)中白细胞和蛋白浓度显著增加、BALF 和血清中多种炎症细胞因子上调、肺组织学损伤以及信号转导和转录激活因子 3(STAT3)和核因子 kappa-轻链增强子的激活 B 细胞(NF-κB)途径在肺部。接受生理盐水或 SP 的 K18-hACE2 小鼠几乎没有或没有肺损伤的证据。接受 S1SP 的 WT 小鼠与 K18-hACE2 小鼠相比,表现出较轻的 COVID-19 症状。此外,S1SP 而不是 SP 降低了培养的人肺微血管跨内皮电阻(TER)和屏障功能。这是 SARS-CoV-2 在体内对一种基本病毒编码蛋白进行 COVID-19 样反应的首次证明。这种 COVID-19 诱导的 ALI 模型可能有助于研究管理 COVID-19 和其他冠状病毒的新治疗方法。
Am J Physiol Lung Cell Mol Physiol. 2021-8-1
Front Immunol. 2024
Emerg Microbes Infect. 2020-12
ERJ Open Res. 2025-8-4
Inflammation. 2024-12-31
Semin Thromb Hemost. 2025-4
Front Physiol. 2024-5-7
Front Immunol. 2024-2-5
PLoS Pathog. 2021-1
Microorganisms. 2021-1-12
ACS Appl Mater Interfaces. 2020-12-16
Acta Med Indones. 2020-7