Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Chongam-ro, Nam-gu, Pohang 790-784, Republic of Korea.
Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Chongam-ro, Nam-gu, Pohang 790-784, Republic of Korea; Division of Environmental Science and Engineering (DESE), Pohang University of Science and Technology (POSTECH), 77 Chongam-ro, Nam-gu, Pohang 790-784, Republic of Korea; Nuclear Environmental Technology Institute (NETI), Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 790-784, Republic of Korea.
J Hazard Mater. 2021 Oct 5;419:126402. doi: 10.1016/j.jhazmat.2021.126402. Epub 2021 Jun 12.
Radioactive borate waste containing a high concentration of boron (B) is problematic to be solidified using cement because soluble borate such as boric acid hinders the hydration reaction. In this study, borate waste was used as a raw material for metakaolin-based geopolymer according to the characteristic that B replaces a part of Si. Geopolymers using KOH alkaline activator (K-geopolymers) showed higher compressive strength than geopolymers using NaOH alkaline activator (Na-geopolymer). In addition, the compressive strength increased proportionally to the Si/(Al+B) ratio regardless of the alkaline cation species. These variations in compressive strength might be due to the viscosity of the geopolymer mixture, atomic size of alkaline cations, and the increase in Si content. The characteristic analyses (XRD, FT-IR, and solid state B MAS NMR) indicated that B was incorporated into the geopolymer structure. Thus, the K-geopolymer has a dense and homogeneous microstructure. In a semi-dynamic leaching test, less B leached from the geopolymers compared to the cement waste form. Consequently, borate waste can be solidified using metakaolin-based geopolymer, and the use of a KOH alkaline activator is advantageous in terms of mechanical property and structural durability.
放射性硼酸盐废物中含有高浓度的硼 (B),难以使用水泥进行固化,因为可溶性硼酸盐(如硼酸)会阻碍水合反应。在这项研究中,硼酸盐废物被用作偏高岭土基地质聚合物的原料,这是根据 B 取代部分 Si 的特性来进行的。使用 KOH 碱性激活剂 (K-地质聚合物) 的地质聚合物比使用 NaOH 碱性激活剂 (Na-地质聚合物) 的地质聚合物具有更高的抗压强度。此外,抗压强度与 Si/(Al+B) 比成正比增加,而与碱性阳离子种类无关。这些抗压强度的变化可能归因于地质聚合物混合物的粘度、碱性阳离子的原子大小以及 Si 含量的增加。特征分析 (XRD、FT-IR 和固态 B MAS NMR) 表明 B 被掺入地质聚合物结构中。因此,K-地质聚合物具有致密且均匀的微观结构。在半动态浸出试验中,与水泥废物形式相比,从地质聚合物中浸出的 B 较少。因此,硼酸盐废物可以使用偏高岭土基地质聚合物进行固化,并且使用 KOH 碱性激活剂在机械性能和结构耐久性方面具有优势。