Wang Hongguang, Wu Hao, Xing Zhiqiang, Wang Rui, Dai Shoushuai
School of Civil Engineering, Northeast Forestry University, Harbin 150040, China.
Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.
Materials (Basel). 2021 Jul 9;14(14):3845. doi: 10.3390/ma14143845.
The current work aimed to explore the effect of Na/Al ratios of 0.43, 0.53, 0.63, 0.73, 0.83, and 0.93, using NaOH to alter the molar ratio, on the mechanical properties of a geopolymer material, with fixing of the Si/Al molar ratio. While fixing the Na/Al molar ratio, alteration of the Si/Al ratios to 1.7, 1.75, 1.8, 1.85, 1.9, 1.95 was used, with silica fume and sodium silicate as a silica corrector. The influence on the micromorphology and macro-strength of samples was characterized through SEM, EDS, and compressive strength characterization methods. The results show that Si/Al and Na/Al molar ratios play a significant role in the microstructure and mechanical behavior of MK-based geopolymers, and revealed that the optimal molar Si/Al and Na/Al ratios for attaining maximum mechanical strength in geopolymers are 1.9 and 0.73, respectively. Under various Si/Al ratios, the macro-strength of the geopolymer mainly relies on the formation of NASH gel, rather than zeolites or silicate derivatives. The appropriate Na/Al molar ratio can contribute to the geopolymerization, but a ultra-high Na/Al molar ratio caused a high alkali state that destroyed the microstructure of the geopolymers. Regardless of the amount of water contained in the initial geopolymer raw material, the water content of Si/Al = 1.65 and Si/Al = 1.75 after curing for 10 days was almost the same, and the bound water content of the final geopolymer was maintained at about 15%. Structural water exists in geological polymer gels in the form of a chemical structure. It has effects on the structural performance strength, while free water affects the volume stability of the geological polymer. Overall, the current work provides a perspective on the elemental composition analysis, combined with the molecular structure and micromorphology, to explore the mechanical performance of geopolymers.
当前的工作旨在探索使用氢氧化钠改变摩尔比,使钠铝比分别为0.43、0.53、0.63、0.73、0.83和0.93,同时固定硅铝摩尔比,对地质聚合物材料力学性能的影响。在固定钠铝摩尔比的情况下,将硅铝比改变为1.7、1.75、1.8、1.85、1.9、1.95,并使用硅灰和硅酸钠作为硅校正剂。通过扫描电子显微镜(SEM)、能谱仪(EDS)和抗压强度表征方法来表征对样品微观形貌和宏观强度的影响。结果表明,硅铝和钠铝摩尔比在基于偏高岭土的地质聚合物的微观结构和力学行为中起着重要作用,并且揭示了在地质聚合物中获得最大机械强度的最佳硅铝和钠铝摩尔比分别为1.9和0.73。在各种硅铝比下,地质聚合物的宏观强度主要依赖于NASH凝胶的形成,而不是沸石或硅酸盐衍生物。适当的钠铝摩尔比有助于地质聚合反应,但超高的钠铝摩尔比会导致高碱状态,破坏地质聚合物的微观结构。无论初始地质聚合物原料中的含水量如何,固化10天后硅铝比为1.65和1.75的样品的含水量几乎相同,最终地质聚合物的结合水含量保持在约15%。结构水以化学结构的形式存在于地质聚合物凝胶中。它对结构性能强度有影响,而自由水影响地质聚合物的体积稳定性。总体而言,当前的工作提供了一个结合分子结构和微观形貌进行元素组成分析,以探索地质聚合物力学性能的视角。