Suppr超能文献

利用患者口头描述发作时的语言表述来自动分析发作形式在鉴别癫痫性发作与非癫痫性发作中的可行性。

Feasibility of using an automated analysis of formulation effort in patients' spoken seizure descriptions in the differential diagnosis of epileptic and nonepileptic seizures.

机构信息

Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.

Department of Computer Science, University of Sheffield, Sheffield, United Kingdom.

出版信息

Seizure. 2021 Oct;91:141-145. doi: 10.1016/j.seizure.2021.06.009. Epub 2021 Jun 13.

Abstract

OBJECTIVE

There are three common causes of Transient Loss of Consciousness (TLOC), syncope, epileptic and psychogenic nonepileptic seizures (PNES). Many individuals who have experienced TLOC initially receive an incorrect diagnosis and inappropriate treatment. Whereas syncope can be distinguished relatively easily with a small number of "yes"/"no" questions, the differentiation of the other two causes of TLOC is more challenging. Previous qualitative research based on the methodology of Conversation Analysis has demonstrated that the descriptions of epileptic seizures contain more formulation effort than accounts of PNES. This research investigates whether features likely to reflect the level of formulation effort can be automatically elicited from audio recordings and transcripts of speech and used to differentiate between epileptic and nonepileptic seizures.

METHOD

Verbatim transcripts of conversations between patients and neurologists were manually produced from video and audio recordings of 45 interactions (21 epilepsy and 24 PNES). The subsection of each transcript containing the person's account of their first seizure was manually extracted for the analysis. Seven automatically detectable features were designed as markers of formulation effort. These features were used to train a Random Forest machine learning classifier.

RESULT

There were significantly more hesitations and repetitions in descriptions of epileptic than nonepileptic seizures. Using a nested leave-one-out cross validation approach, 71% of seizures were correctly classified by the Random Forest classifier.

DISCUSSION

This pilot study provides proof of principle that linguistic features that have been automatically extracted from audio recordings and transcripts could be used to distinguish between epileptic seizures and PNES and thereby contribute to the differential diagnosis of TLOC. Future research should explore whether additional observations can be incorporated into a diagnostic stratification tool and compare the performance of these features when they are combined with additional information provided by patients and witnesses about seizure manifestations and medical history.

摘要

目的

导致一过性意识丧失(TLOC)的原因有三,分别为晕厥、癫痫和心因性非癫痫性发作(PNES)。许多经历过 TLOC 的患者最初会被误诊并接受不恰当的治疗。虽然晕厥可以通过少量的“是/否”问题相对容易地进行鉴别,但其他两种 TLOC 病因的鉴别则更为困难。先前基于会话分析方法的定性研究表明,癫痫发作的描述比 PNES 的描述需要更多的措辞努力。本研究调查了是否可以从语音的录音和文字记录中自动提取出可能反映措辞努力程度的特征,并将其用于区分癫痫发作和非癫痫性发作。

方法

对 45 次患者与神经科医生之间的互动(21 次癫痫发作和 24 次 PNES)的视频和音频记录进行手动制作逐字逐句的文字记录。手动从每个文字记录的癫痫发作首次发作描述部分提取记录。设计了七个可自动检测的特征作为措辞努力的标志。这些特征用于训练随机森林机器学习分类器。

结果

癫痫发作的描述中出现停顿和重复的次数明显多于非癫痫发作的描述。使用嵌套的留一交叉验证方法,随机森林分类器正确分类了 71%的发作。

讨论

这项初步研究证明了可以从录音和文字记录中自动提取的语言特征可用于区分癫痫发作和 PNES,从而有助于 TLOC 的鉴别诊断。未来的研究应该探索是否可以将其他观察结果纳入诊断分层工具,并比较这些特征与患者和目击者提供的关于发作表现和病史的其他信息相结合时的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验