Department of Cardiac Surgery, Policlinico Gemelli Hospital, Largo Agostino Gemelli, 8, 00100, Roma, Italy.
Nalecz Institute of Technology, IBBE-PAS, Warsaw, Poland.
Cardiovasc Eng Technol. 2022 Feb;13(1):139-146. doi: 10.1007/s13239-021-00556-5. Epub 2021 Jun 22.
Left ventricular (LV) end-systolic elastance (Ees) can be estimated using single-beat (Ees(sb)) Chen method, employing systolic and diastolic arm-cuff pressures, stroke volume (SV), ejection fraction and estimated normalized ventricular elastance at arterial end-diastole. This work aims to conduct a sensitivity analysis of Chen formula to verify its reliability and applicability in clinical scenario.
Starting from a baseline condition, we evaluated the sensitivity of Ees(sb) to the parameters contained in the formula. Moreover, a mathematical model of the cardiovascular system was used to evaluate the sensitivity of Ees(sb) to end-diastolic LV elastance (Eed), Ees, arterial systemic resistance (Ras) and heart rate (HR).
In accordance with Ees definition, Ees(sb) increases by increasing aortic pressure and pre-ejection time, reaching the highest value for a pre-ejection time = 40 ms, and then decreases. In contrast with Ees definition, Ees(sb) increases (from 3.21 mmHg/mL to 12.15 mmHg/mL) by increasing the LV end-systolic volume and decreases by increasing the SV. In the majority of the analysis with the mathematical model, Ees was underestimated using the Chen method: by increasing Ees (from 0.5 to 2.5 mmHg/mL), Ees(sb) passes only from 0.56 to 1.54 mmHg/mL. Ees(sb) increases for higher Eed (from 1.03 to 2.33 mmHg/mL). Finally, Ees(sb) decreases (increases) for HR < 50 bpm (< 50 bpm), and for Ras < 1100 mmHg/gcm (> 1100 mmHg/gcm).
Unexpectedly Ees(sb) increases for higher LV end-systolic volume and decreases for higher SV. These results contrast with Ees definition, which is the ratio between the LV end-systolic pressure and the LV end-systolic volume. Moreover, Ees(sb) is influenced by cardiocirculatory parameters such as LV Eed, HR, Ras, ejection time, and pre-ejection time. Finally, Ees(sb) computed with the model output often underestimates model Ees.
左心室(LV)收缩末期弹性(Ees)可以使用单拍(Ees(sb))Chen 方法进行估计,该方法使用收缩期和舒张期臂带压力、心排量(SV)、射血分数和估计的动脉端舒张末期标准化心室弹性。本工作旨在对 Chen 公式进行灵敏度分析,以验证其在临床情况下的可靠性和适用性。
从基线条件开始,我们评估了公式中参数对 Ees(sb)的灵敏度。此外,还使用心血管系统的数学模型来评估 Ees(sb)对舒张末期 LV 弹性(Eed)、Ees、动脉系统阻力(Ras)和心率(HR)的灵敏度。
根据 Ees 的定义,Ees(sb)随主动脉压和射血前时间的增加而增加,当射血前时间=40ms 时达到最大值,然后降低。与 Ees 的定义相反,Ees(sb)随 LV 收缩末期容积的增加而增加(从 3.21mmHg/mL 增加到 12.15mmHg/mL),随 SV 的增加而降低。在使用数学模型进行的大多数分析中,Chen 方法低估了 Ees:当 Ees 从 0.5 增加到 2.5mmHg/mL 时,Ees(sb)仅从 0.56 增加到 1.54mmHg/mL。当 Eed 较高(从 1.03 增加到 2.33mmHg/mL)时,Ees(sb)增加。最后,Ees(sb)在 HR<50bpm(<50bpm)和 Ras<1100mmHg/gcm(>1100mmHg/gcm)时降低(增加)。
出乎意料的是,Ees(sb)随 LV 收缩末期容积的增加而增加,随 SV 的增加而减少。这些结果与 Ees 的定义相矛盾,后者是 LV 收缩末期压力与 LV 收缩末期容积的比值。此外,Ees(sb)受 LV Eed、HR、Ras、射血时间和射血前时间等心血管参数的影响。最后,模型输出的 Ees(sb)计算值通常低估了模型 Ees。