State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
The First Affiliated Hospital Zhengzhou University, 1 Jianshe Street, Zhengzhou, Henan, 450052, P. R. China.
Small. 2021 Aug;17(34):e2007576. doi: 10.1002/smll.202007576. Epub 2021 Jun 23.
Photocatalytic H evolution under solar illumination has been considered to be a promising technology for green energy resources. Developing highly efficient photocatalysts for photocatalytic water splitting is long-term desired but still challenging. Conjugated polymers (CPs) have attracted ongoing attention and have been considered to be promising alternatives for solar-driven H production due to the excellent merits of the large π-conjugated system, versatile structures, tunable photoelectric properties, and well-defined chemical composites. The excellent merits have offered numerous methods for boosting photocatalytic hydrogen evolution (PHE) of initial CP-based photocatalysts, whose apparent quantum yield is dramatically increased from <1 to >20% in recent five years. According to the photocatalytic mechanism, this review herein systematically summarizes three major strategies for boosting photocatalytic H production of CPs: 1) enhancing visible light absorption, 2) suppressing recombination of electron-hole pairs, and 3) boosting surface catalytic reaction, mainly involving eleven methods, that is, copolymerization, modifying cross-linker, constructing a donor-acceptor structure, functionalization, fabricating organic heterojunction, loading cocatalyst, and surface modification. Finally, the perspectives towards the future development of PHE are proposed.
在太阳光照射下进行光催化 H 2 释放被认为是一种有前途的绿色能源技术。开发用于光催化水分解的高效光催化剂是长期以来的期望,但仍然具有挑战性。共轭聚合物 (CPs) 由于具有大的π共轭体系、多样的结构、可调的光电性能和明确的化学复合材料等优异的优点,引起了持续的关注,并被认为是太阳能驱动 H 2 生产的有前途的替代品。这些优异的优点为提高初始 CP 基光催化剂的光催化析氢 (PHE) 提供了多种方法,其表观量子产率在最近五年内从<1%大幅提高到>20%。根据光催化机制,本文系统地总结了提高 CPs 光催化 H 2 产生的三种主要策略:1)增强可见光吸收,2)抑制电子-空穴对的复合,3)促进表面催化反应,主要涉及 11 种方法,即共聚、修饰交联剂、构建给体-受体结构、功能化、制备有机异质结、负载助催化剂和表面改性。最后,对 PHE 的未来发展提出了展望。