Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
Cell Rep. 2021 Jun 22;35(12):109284. doi: 10.1016/j.celrep.2021.109284.
Glucose is arguably the most important molecule in metabolism, and its dysregulation underlies diabetes. We describe a family of single-wavelength genetically encoded glucose sensors with a high signal-to-noise ratio, fast kinetics, and affinities varying over four orders of magnitude (1 μM to 10 mM). The sensors allow mechanistic characterization of glucose transporters expressed in cultured cells with high spatial and temporal resolution. Imaging of neuron/glia co-cultures revealed ∼3-fold faster glucose changes in astrocytes. In larval Drosophila central nervous system explants, intracellular neuronal glucose fluxes suggested a rostro-caudal transport pathway in the ventral nerve cord neuropil. In zebrafish, expected glucose-related physiological sequelae of insulin and epinephrine treatments were directly visualized. Additionally, spontaneous muscle twitches induced glucose uptake in muscle, and sensory and pharmacological perturbations produced large changes in the brain. These sensors will enable rapid, high-resolution imaging of glucose influx, efflux, and metabolism in behaving animals.
葡萄糖可以说是新陈代谢中最重要的分子,其失调是糖尿病的基础。我们描述了一类单波长基因编码葡萄糖传感器,具有高信噪比、快速动力学和亲和力变化跨越四个数量级(1 μM 至 10 mM)。这些传感器允许以高时空分辨率对培养细胞中表达的葡萄糖转运蛋白进行机制表征。神经元/神经胶质共培养物的成像显示,星形胶质细胞中的葡萄糖变化快约 3 倍。在幼虫果蝇中枢神经系统外植体中,细胞内神经元葡萄糖通量表明在腹神经索神经胶中的头侧到尾侧运输途径。在斑马鱼中,胰岛素和肾上腺素处理的预期与葡萄糖相关的生理后果可以直接观察到。此外,自发的肌肉抽搐会引起肌肉摄取葡萄糖,而感觉和药理学干扰会导致大脑发生巨大变化。这些传感器将能够在行为动物中快速、高分辨率地成像葡萄糖的流入、流出和代谢。