Suppr超能文献

增强子驱动的膜标记物分析揭示了果蝇中非自主机制中的神经元-胶质相互作用。

Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron-glia interactions in Drosophila.

机构信息

The Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, CA 94143-0725, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9673-8. doi: 10.1073/pnas.1106386108. Epub 2011 May 23.

Abstract

Extrinsic factors and the interactions of neurons with surrounding tissues are essential for almost every aspect of neuronal development. Here we describe a strategy of gene expression with an independent enhancer-driven cellular marker (GEEM) for studying roles of cell-cell interactions and extrinsic factors in the development of the Drosophila nervous system. Key to this strategy is robust expression of enhancer-driven transgenic markers in specific neurons. To this end, we have created vectors to achieve bright and even labeling of neuronal processes, easy cloning of enhancer elements, and efficient and flexible generation of transgenic animals. We provide examples of enhancer-driven membrane markers for specific neurons in both the peripheral and central nervous systems and their applications in the study of neuronal projections and connections in the Drosophila brain. We further applied GEEM to examine the wrapping of sensory neuron somas by glia during embryonic and larval stages, and neuron-glia interaction during dendrite pruning in live animals, leading to the discovery that glia play critical roles in the severing and degradation of proximal dendrites. The GEEM paradigm should be applicable to the studies of both cell-autonomous and nonautonomous regulations of any cell type.

摘要

外在因素和神经元与周围组织的相互作用对于神经元发育的几乎所有方面都是必不可少的。在这里,我们描述了一种利用独立增强子驱动的细胞标记物(GEEM)进行基因表达的策略,用于研究细胞间相互作用和外在因素在果蝇神经系统发育中的作用。该策略的关键是在特定神经元中实现增强子驱动的转基因标记的稳健表达。为此,我们创建了载体,以实现神经元过程的明亮均匀标记、增强子元件的轻松克隆以及转基因动物的高效灵活生成。我们提供了外周和中枢神经系统中特定神经元的增强子驱动的膜标记物的示例,并将其应用于研究果蝇大脑中的神经元投射和连接。我们进一步将 GEEM 应用于研究胚胎和幼虫阶段感觉神经元体被胶质细胞包裹的情况,以及在活体动物中树突修剪过程中的神经元-胶质细胞相互作用,从而发现胶质细胞在近端树突的切断和降解中发挥关键作用。GEEM 范式应该适用于任何细胞类型的细胞自主和非自主调节的研究。

相似文献

1
Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron-glia interactions in Drosophila.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9673-8. doi: 10.1073/pnas.1106386108. Epub 2011 May 23.
3
Peripheral glia direct axon guidance across the CNS/PNS transition zone.
Dev Biol. 2001 Oct 1;238(1):47-63. doi: 10.1006/dbio.2001.0411.
5
Reciprocal interactions between neurons and glia are required for Drosophila peripheral nervous system development.
J Neurosci. 2003 Sep 10;23(23):8221-30. doi: 10.1523/JNEUROSCI.23-23-08221.2003.
6
glial cells missing: a genetic switch that controls glial versus neuronal fate.
Cell. 1995 Sep 22;82(6):1013-23. doi: 10.1016/0092-8674(95)90280-5.
7
Axonal wrapping in the Drosophila PNS is controlled by glia-derived neuregulin homolog Vein.
Development. 2015 Apr 1;142(7):1336-45. doi: 10.1242/dev.116616. Epub 2015 Mar 10.
10
Glial remodeling during metamorphosis influences the stabilization of motor neuron branches in Drosophila.
Dev Biol. 2010 Apr 15;340(2):344-54. doi: 10.1016/j.ydbio.2010.01.005. Epub 2010 Jan 18.

引用本文的文献

1
Mitochondrial origins of the pressure to sleep.
Nature. 2025 Jul 16. doi: 10.1038/s41586-025-09261-y.
2
Neuron-to-glia signaling drives critical period experience-dependent synapse pruning.
Sci Rep. 2025 Jul 16;15(1):25744. doi: 10.1038/s41598-025-11528-3.
4
Sequential and independent probabilistic events regulate differential axon targeting during development in Drosophila melanogaster.
Nat Neurosci. 2025 May;28(5):998-1011. doi: 10.1038/s41593-025-01937-y. Epub 2025 May 7.
7
Phagocytosis-driven neurodegeneration through opposing roles of an ABC transporter in neurons and phagocytes.
Sci Adv. 2025 Mar 14;11(11):eadr5448. doi: 10.1126/sciadv.adr5448. Epub 2025 Mar 12.
10
Microglia as hunters or gatherers of brain synapses.
Nat Neurosci. 2025 Jan;28(1):15-23. doi: 10.1038/s41593-024-01818-w. Epub 2024 Dec 11.

本文引用的文献

3
Branching out: mechanisms of dendritic arborization.
Nat Rev Neurosci. 2010 May;11(5):316-28. doi: 10.1038/nrn2836.
4
Molecular mechanisms of synaptic specificity.
Mol Cell Neurosci. 2010 Mar;43(3):261-7. doi: 10.1016/j.mcn.2009.11.009. Epub 2009 Dec 5.
5
Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators.
Nat Methods. 2009 Dec;6(12):875-81. doi: 10.1038/nmeth.1398. Epub 2009 Nov 8.
6
The twin spot generator for differential Drosophila lineage analysis.
Nat Methods. 2009 Aug;6(8):600-2. doi: 10.1038/nmeth.1349. Epub 2009 Jul 26.
7
Twin-spot MARCM to reveal the developmental origin and identity of neurons.
Nat Neurosci. 2009 Jul;12(7):947-53. doi: 10.1038/nn.2345. Epub 2009 Jun 14.
8
Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis.
Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6363-8. doi: 10.1073/pnas.0902051106. Epub 2009 Mar 27.
9
Motor control in a Drosophila taste circuit.
Neuron. 2009 Feb 12;61(3):373-84. doi: 10.1016/j.neuron.2008.12.033.
10
The neural substrate of spectral preference in Drosophila.
Neuron. 2008 Oct 23;60(2):328-42. doi: 10.1016/j.neuron.2008.08.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验