Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX.
J Bronchology Interv Pulmonol. 2022 Jan 1;29(1):62-70. doi: 10.1097/LBR.0000000000000788.
Likelihood ratios (LRs) are a method to evaluate diagnostic test performance and assist in clinical decision making. While sensitivity and specificity are useful for binary tests, they cannot be directly applied to tests with >2 possible test results. LRs can be used for diagnostic tests with 2 or more possible test results and are also suitable for tests with continuous results. In this paper we review the concepts of LRs and how they relate to sensitivity and specificity. Practical examples from the pulmonary literature of how LRs are used to calculate posttest disease probabilities using Bayes' theorem are provided. These include examples when there are 3 or more categorical test results that have distinct interpretations (eg, cytology results from endobronchial ultrasound) as well as continuous test results (eg, computed tomography lymph node size and probability of metastasis). We also highlight some problems, pitfalls, and misunderstandings about LRs in clinical practice. We use the example of how the Nodify XL2 test incorrectly calculates and applies LRs, which may lead to falsely low estimates of the probability of cancer in some pulmonary nodules.
似然比 (LR) 是一种评估诊断测试性能和辅助临床决策的方法。虽然敏感性和特异性对于二分类测试很有用,但它们不能直接应用于具有 >2 种可能测试结果的测试。LR 可用于具有 2 种或更多种可能测试结果的诊断测试,也适用于连续结果的测试。本文回顾了 LR 的概念以及它们与敏感性和特异性的关系。提供了来自肺部文献的实际示例,说明如何使用贝叶斯定理使用 LR 计算后测疾病概率。这些示例包括具有不同解释的 3 种或更多分类测试结果的情况(例如,支气管内超声的细胞学结果)以及连续测试结果(例如,计算机断层扫描淋巴结大小和转移概率)。我们还强调了 LR 在临床实践中存在的一些问题、陷阱和误解。我们以 Nodify XL2 测试如何错误地计算和应用 LR 的示例为例,这可能导致某些肺部结节的癌症概率被错误地低估。