Center for Hydrometeorology and Remote Sensing (CHRS), The Henry Samueli School of Engineering, Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92697, USA.
Department of Earth System Science, University of California Irvine, 3200 Croul Hall, Irvine, CA, 92697-2175, USA.
Sci Data. 2021 Jun 23;8(1):157. doi: 10.1038/s41597-021-00940-9.
Accurate long-term global precipitation estimates, especially for heavy precipitation rates, at fine spatial and temporal resolutions is vital for a wide variety of climatological studies. Most of the available operational precipitation estimation datasets provide either high spatial resolution with short-term duration estimates or lower spatial resolution with long-term duration estimates. Furthermore, previous research has stressed that most of the available satellite-based precipitation products show poor performance for capturing extreme events at high temporal resolution. Therefore, there is a need for a precipitation product that reliably detects heavy precipitation rates with fine spatiotemporal resolution and a longer period of record. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System-Climate Data Record (PERSIANN-CCS-CDR) is designed to address these limitations. This dataset provides precipitation estimates at 0.04° spatial and 3-hourly temporal resolutions from 1983 to present over the global domain of 60°S to 60°N. Evaluations of PERSIANN-CCS-CDR and PERSIANN-CDR against gauge and radar observations show the better performance of PERSIANN-CCS-CDR in representing the spatiotemporal resolution, magnitude, and spatial distribution patterns of precipitation, especially for extreme events.
准确的长期全球降水估计值,特别是在精细的时空分辨率下,对于各种气候学研究至关重要。大多数现有的业务降水估计数据集要么提供短期的高空间分辨率估计值,要么提供长期的低空间分辨率估计值。此外,先前的研究强调,大多数现有的基于卫星的降水产品在高时间分辨率下捕捉极端事件的性能较差。因此,需要有一种降水产品,能够以精细的时空分辨率可靠地检测到高降水率,并具有更长的记录期。基于人工神经网络的遥感信息降水估计-云分类系统-气候数据记录(PERSIANN-CCS-CDR)就是为了解决这些限制而设计的。该数据集提供了从 1983 年到现在全球 60°S 到 60°N 范围内 0.04°空间和 3 小时时间分辨率的降水估计值。对 PERSIANN-CCS-CDR 和 PERSIANN-CDR 与测量仪和雷达观测值的评估表明,PERSIANN-CCS-CDR 在表示降水的时空分辨率、量级和空间分布模式方面表现更好,特别是对于极端事件。