Chalek Kevin R, Dong Xinning, Tong Fei, Kudla Ryan A, Zhu Lingyan, Gill Adam D, Xu Wenwen, Yang Chen, Hartman Joshua D, Magalhães Alviclér, Al-Kaysi Rabih O, Hayward Ryan C, Hooley Richard J, Beran Gregory J O, Bardeen Christopher J, Mueller Leonard J
Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
Department of Biochemistry, University of California-Riverside Riverside CA 92521 USA.
Chem Sci. 2020 Oct 30;12(1):453-463. doi: 10.1039/d0sc05118g.
Crystals composed of photoreactive molecules represent a new class of photomechanical materials with the potential to generate large forces on fast timescales. An example is the photodimerization of 9--butyl-anthracene ester () in molecular crystal nanorods that leads to an average elongation of 8%. Previous work showed that this expansion results from the formation of a metastable crystalline product. In this article, it is shown how a novel combination of ensemble oriented-crystal solid-state NMR, X-ray diffraction, and first principles computational modeling can be used to establish the absolute unit cell orientations relative to the shape change, revealing the atomic-resolution mechanism for the photomechanical response and enabling the construction of a model that predicts an elongation of 7.4%, in good agreement with the experimental value. According to this model, the nanorod expansion does not result from an overall change in the volume of the unit cell, but rather from an anisotropic rearrangement of the molecular contents. The ability to understand quantitatively how molecular-level photochemistry generates mechanical displacements allows us to predict that the expansion could be tuned from +9% to -9.5% by controlling the initial orientation of the unit cell with respect to the nanorod axis. This application of NMR-assisted crystallography provides a new tool capable of tying the atomic-level structural rearrangement of the reacting molecular species to the mechanical response of a nanostructured sample.
由光反应性分子组成的晶体代表了一类新型的光机械材料,具有在快速时间尺度上产生大力的潜力。一个例子是分子晶体纳米棒中9-丁基蒽酯()的光二聚化,其导致平均伸长8%。先前的工作表明,这种膨胀是由亚稳态晶体产物的形成引起的。在本文中,展示了如何将整体取向晶体固态核磁共振、X射线衍射和第一性原理计算建模的新颖组合用于确定相对于形状变化的绝对晶胞取向,揭示光机械响应的原子分辨率机制,并构建一个预测伸长率为7.4%的模型,与实验值吻合良好。根据该模型,纳米棒的膨胀不是由晶胞体积的整体变化引起的,而是由分子内容物的各向异性重排引起的。定量理解分子水平光化学如何产生机械位移的能力使我们能够预测,通过控制晶胞相对于纳米棒轴的初始取向,膨胀可以从+9%调整到-9.5%。核磁共振辅助晶体学的这种应用提供了一种新工具,能够将反应分子物种的原子水平结构重排与纳米结构样品的机械响应联系起来。