Suppr超能文献

从第一性原理预测分子晶体性质:从有限温度热化学到 NMR 晶体学。

Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.

机构信息

Department of Chemistry, University of California , Riverside, California 92521, United States.

出版信息

Acc Chem Res. 2016 Nov 15;49(11):2501-2508. doi: 10.1021/acs.accounts.6b00404. Epub 2016 Oct 18.

Abstract

Molecular crystals occur widely in pharmaceuticals, foods, explosives, organic semiconductors, and many other applications. Thanks to substantial progress in electronic structure modeling of molecular crystals, attention is now shifting from basic crystal structure prediction and lattice energy modeling toward the accurate prediction of experimentally observable properties at finite temperatures and pressures. This Account discusses how fragment-based electronic structure methods can be used to model a variety of experimentally relevant molecular crystal properties. First, it describes the coupling of fragment electronic structure models with quasi-harmonic techniques for modeling the thermal expansion of molecular crystals, and what effects this expansion has on thermochemical and mechanical properties. Excellent agreement with experiment is demonstrated for the molar volume, sublimation enthalpy, entropy, and free energy, and the bulk modulus of phase I carbon dioxide when large basis second-order Møller-Plesset perturbation theory (MP2) or coupled cluster theories (CCSD(T)) are used. In addition, physical insight is offered into how neglect of thermal expansion affects these properties. Zero-point vibrational motion leads to an appreciable expansion in the molar volume; in carbon dioxide, it accounts for around 30% of the overall volume expansion between the electronic structure energy minimum and the molar volume at the sublimation point. In addition, because thermal expansion typically weakens the intermolecular interactions, neglecting thermal expansion artificially stabilizes the solid and causes the sublimation enthalpy to be too large at higher temperatures. Thermal expansion also frequently weakens the lower-frequency lattice phonon modes; neglecting thermal expansion causes the entropy of sublimation to be overestimated. Interestingly, the sublimation free energy is less significantly affected by neglecting thermal expansion because the systematic errors in the enthalpy and entropy cancel somewhat. Second, because solid state nuclear magnetic resonance (NMR) plays an increasingly important role in molecular crystal studies, this Account discusses how fragment methods can be used to achieve higher-accuracy chemical shifts in molecular crystals. Whereas widely used plane wave density functional theory models are largely restricted to generalized gradient approximation (GGA) functionals like PBE in practice, fragment methods allow the routine use of hybrid density functionals with only modest increases in computational cost. In extensive molecular crystal benchmarks, hybrid functionals like PBE0 predict chemical shifts with 20-30% higher accuracy than GGAs, particularly for H, C, and N nuclei. Due to their higher sensitivity to polarization effects, O chemical shifts prove slightly harder to predict with fragment methods. Nevertheless, the fragment model results are still competitive with those from GIPAW. The improved accuracy achievable with fragment approaches and hybrid density functionals increases discrimination between different potential assignments of individual shifts or crystal structures, which is critical in NMR crystallography applications. This higher accuracy and greater discrimination are highlighted in application to the solid state NMR of different acetaminophen and testosterone crystal forms.

摘要

分子晶体广泛存在于药物、食品、炸药、有机半导体和许多其他应用中。由于分子晶体电子结构建模方面取得了实质性进展,人们现在的注意力正从基本的晶体结构预测和晶格能建模转向对有限温度和压力下实验可观测性质的准确预测。本专题讨论了基于片段的电子结构方法如何用于模拟各种与实验相关的分子晶体性质。首先,描述了片段电子结构模型与准谐技术的耦合,用于模拟分子晶体的热膨胀,以及这种膨胀对热化学和力学性质的影响。当使用大基组二阶 Møller-Plesset 微扰理论(MP2)或耦合簇理论(CCSD(T))时,对二氧化碳的第一相的摩尔体积、升华焓、熵和自由能以及体弹性模量进行了极好的实验验证。此外,还提供了对忽略热膨胀如何影响这些性质的物理理解。零点振动运动导致摩尔体积显著膨胀;在二氧化碳中,它占电子结构能量最小值与升华点摩尔体积之间总膨胀的约 30%。此外,由于热膨胀通常会削弱分子间相互作用,因此忽略热膨胀会人为地稳定固体,并导致在较高温度下升华焓过大。热膨胀还经常会削弱较低频率的晶格声子模式;忽略热膨胀会导致升华熵被高估。有趣的是,由于焓和熵的系统误差有些抵消,因此忽略热膨胀对升华自由能的影响较小。其次,由于固态核磁共振(NMR)在分子晶体研究中扮演着越来越重要的角色,本专题讨论了如何通过片段方法在分子晶体中实现更高精度的化学位移。尽管广泛使用的平面波密度泛函理论模型在实践中主要限于广义梯度近似(GGA)函数,如 PBE,但片段方法允许在计算成本仅略有增加的情况下常规使用混合密度泛函。在广泛的分子晶体基准测试中,PBE0 等混合泛函预测的化学位移精度比 GGA 高 20-30%,特别是对于 H、C 和 N 核。由于它们对极化效应的敏感性更高,因此 O 化学位移的预测稍微困难一些。尽管如此,片段模型的结果仍然与 GIPAW 的结果具有竞争力。片段方法和混合密度泛函可以实现更高的精度,从而提高了对单个位移或晶体结构的不同潜在分配的分辨能力,这在 NMR 晶体学应用中至关重要。这一更高的精度和更大的分辨能力在不同对乙酰氨基酚和睾丸激素晶体形式的固态 NMR 中的应用中得到了强调。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验