Abid Seifallah, Gisbert Yohan, Kojima Mitsuru, Saffon-Merceron Nathalie, Cuny Jérôme, Kammerer Claire, Rapenne Gwénaël
CEMES, Université de Toulouse, CNRS 29 Rue Marvig F-31055 Toulouse Cedex 4 France
Division of Materials Science, Nara Institute of Science and Technology, NAIST 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan.
Chem Sci. 2021 Feb 18;12(13):4709-4721. doi: 10.1039/d0sc06379g.
Mastering intermolecular gearing is crucial for the emergence of complex functional nanoscale machineries. However, achieving correlated motion within trains of molecular gears remains highly challenging, due to the multiple degrees of freedom of each cogwheel. In this context, we designed and synthesised a series of star-shaped organometallic molecular gears incorporating a hydrotris(indazolyl)borate anchor to prevent diffusion on the surface, a central ruthenium atom as a fixed rotation axis, and an azimuthal pentaporphyrinic cyclopentadienyl cogwheel specifically labelled to monitor its motion by non-time-resolved Scanning Tunneling Microscopy (STM). Desymmetrisation of the cogwheels was first achieved sterically, . by introducing one tooth longer than the other four. For optimal mechanical interactions, chemical labelling was also investigated as a preferential way to induce local contrast in STM images, and the electronic properties of one single paddle were modulated by varying the porphyrinic scaffold or the nature of the central metal. To reach such a structural diversity, our modular synthetic approach relied on sequential cross-coupling reactions on a penta(-halogenophenyl)cyclopentadienyl ruthenium(ii) key building block, bearing a single pre-activated -iodophenyl group. Chemoselective Sonogashira or more challenging Suzuki-Miyaura reactions allowed the controlled introduction of the tagged porphyrinic tooth, and the subsequent four-fold cross-couplings yielded the prototypes of pentaporphyrinic molecular gears for on-surface studies, incorporating desymmetrised cogwheels over 5 nm in diameter.
掌握分子间的齿轮传动对于复杂功能纳米级机械的出现至关重要。然而,由于每个齿轮的多个自由度,在分子齿轮链中实现相关运动仍然极具挑战性。在此背景下,我们设计并合成了一系列星形有机金属分子齿轮,其包含一个氢三(吲唑基)硼酸酯锚定基团以防止在表面扩散,一个中心钌原子作为固定旋转轴,以及一个方位角五卟啉环戊二烯基齿轮,通过非时间分辨扫描隧道显微镜(STM)对其运动进行专门标记监测。首先通过空间位阻实现齿轮的不对称化,即引入一个比其他四个齿更长的齿。为了实现最佳的机械相互作用,还研究了化学标记作为在STM图像中诱导局部对比度的优先方法,并且通过改变卟啉支架或中心金属的性质来调节单个桨叶的电子性质。为了实现这种结构多样性,我们的模块化合成方法依赖于在一个五(卤代苯基)环戊二烯基钌(II)关键构建块上进行顺序交叉偶联反应,该构建块带有一个单一的预活化碘苯基基团。化学选择性的Sonogashira反应或更具挑战性的Suzuki-Miyaura反应允许可控地引入标记的卟啉齿,随后的四重交叉偶联产生了用于表面研究的五卟啉分子齿轮原型,其包含直径超过5 nm的不对称齿轮。